问题 - 求矩阵中第K大的数是多少? - 51Nod


问题 - 求矩阵中第K大的数是多少? - 51Nod
2个整数数组A,B,长度分别为m,n。从A,B中各选1个元素A[i],B[j],相加后得到C[i,j],共有m*n种选择方式,对应m*n个数,求这m*n个数中第K大的数是多少?


1、碰到这个问题的一般思路是,把m*n个数先求出来,然后用Nth-Elemnet,找出第k大的数。Nth-Element就是快排变形的那个partition,线性时间,这里不延伸讲了。这样的话时间复杂度O(m*n),空间复杂度O(m*n)。

2、对于第一种方法,时间复杂度还好说,空间复杂度实在问题比较大,是否可以不求出这m*n个元素就直接找打第K大的数呢?

可以这样,先对A,B分别排序。复杂度n*log(n) + m*log(m),排序后我们就发现第k大的数一定在Min = A[0] + B[0] <= C[k] <= A[n] + B[m] = Max,而且从Min到Max,K是递减,如果用二分法找这个C[k],然后在A和B中判断,有多少个数比C[k]大。如果恰好有k-1个数比C[k]大,则C[k]是第K大的数。考虑有相等的情况,如果比C[K]大的数不到K个,而比C[K]小的数不到m*n - k个,则说明等于C[K]的数有多个(当然直接判断=也可以),那么C[K]就是第k大的数。

总结一下这个思路,就是在Min和Max之间,二分找这个和,然后在排序好的数组A,B中,统计有多少个数大于这个和。

在这个思路的基础上,如何统计有多少个数的和大于给定的数C[k]呢?我们可以枚举数组A中的元素,然后利用二分,在数组B中找到C[k] - A[i]对应的元素B[j],那么所有比B[j]大的元素同A[i]的和,都大于C[k]。这样就可以写出一个n*log(m)*log(Max - Min) + n*log(n) + m*log(m)的程序来解决这个问题,空间复杂度O(1)

3、对于方法2,有一个简单的优化,就是如果n > m,也就是数组B的长度大于数组A的长度,如果枚举数组B,效率会更高,空间还是O(1),时间变为了min(m,n)*log(max(n,m))*log(max - min) + n*log(n) + m*log(m)

4、对于方法2和3,都还可以进一步优化,优化的关键点在于:枚举数组A,在数组B中二分找一个数。如果改用头尾指针的方式,平摊下来是线性的。方法如下:

先用一个指针指向数组A的头,一个指向数组B的尾,如果A[0] + B[m] < C[k],A的指针后移,判断A[1] + B[m],如果A[0] + B[m] > C[k],则B的指针前移,判断A[0] + B[m-1]。简单说就是< C[k],A的指针后移,> C[k],B的指针前移。不过问题的关键在于计数,同时统计大于C[k]的小于C[k]的数有多少个。如果A[0] + B[m] < C[k],则A[0] + B[0],B[1]......B[m-1]都小于<C[k],小于的计数+m,如果A[0] + B[m] > C[k],则A[1],A[2]......A[n]+B[m]都大于C[k],大于计数+n,这样,就可以写出一个(m+n)*log(Max-Min)+ n*log(n) + m*log(m)的程序,来解决这个问题。

到此为止,优化到头了么?其实此问题可以转为在杨氏矩阵中找第k大的值,问题还有优化的空间,关键在于Log(Max - Min),可以优化到Log(m*n),后者适用范围就不仅仅是整数了,实数范围都可以,但具体方法比较复杂,有兴趣大家可以再深入研究一下。
        static private int[] A, B;
        //求第K个元素

        static long KthElement(long k)
        {
            //该数肯定位于upper和lower之间
            long upper = (long)A[A.Length - 1] * B[B.Length - 1], lower = A[0] * B[0];
            return Solve(upper, lower, k);
        }

        //二分查找该值
        static long Solve(long upper, long lower, long count)
        {
            if (upper == lower) return upper;

            long mid = (upper + lower) >> 1;

            if (Counter(mid) >= count)
                return Solve(upper, mid + 1, count);

            if (Counter(mid - 1) < count)
                return Solve(mid - 1, lower, count);

            return mid;
        }

        //统计比指定value大的数有多少个
        static long Counter(long value)
        {
            int i = 0, j = B.Length - 1;
            long count = 0;

            while (i < A.Length && j >= 0)
            {
                if ((long)A[i] * (long)B[j] > value)
                {
                    count += A.Length - i;
                    j--;
                }
                else
                    i++;
            }
            return count;
        }
    }
http://blog.csdn.net/huangxy10/article/details/8084652
https://segmentfault.com/q/1010000000715010
http://zhiqiang.org/blog/science/computer-science/median-algorithm-of-ordered-matrix.html
给定 n×n 的实数矩阵,每行和每列都是递增的,求这 n2 个数的中位数。
使用类似Tarjan的线性中位数的方法,每次找每列中位数,然后找中位数的中位数,之后可以删除前一半列的上半部分或者后一半列的下半部分,这样可以实现复杂性 O(nlog2n) 。
但是这个问题是有 O(n) 的算法的,在Top Language Google GroupObtuse Sword的指点下,找到了这个问题的原始论文:Generalized Selection and Ranking: Sorted Matrices。事实上这篇论文证明了更强的结论:
对于一个 n×m ( nm )的矩阵,若每行和每列都是递增的,则可以在 O(nlog2m/n) 找到第 k大的数。
算法的基本思路是将矩阵依次对半划分成更小的子矩阵,然后删除不可能包含所求中位数的子矩阵。通过对每次划分后子矩阵个数的估计,发现此算法时间复杂度为 O(nlog2m/n) 。
使用同样的技巧,可以证明更更强的结论(这个算法具体过程就没细看了):
一堆 ni×mi ( nimi )的矩阵,若每个矩阵的每行和每列都是递增的,则selection problem(即找第 k 大的数)的时间复杂度为 O(nilog2mi/ni) 。
Read full article from 问题 - 求矩阵中第K大的数是多少? - 51Nod

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts