Sunday, September 11, 2016

LeetCode 399 - Evaluate Division


http://bookshadow.com/weblog/2016/09/11/leetcode-evaluate-division/
Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0.
Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0 ].
The input is: vector<pair<string, string>> euqations, vector<double>& values, vector<pair<string, string>> query . where equations.size() == values.size(),the values are positive. this represents the equations.return vector<double>. .
The example above: equations = [ ["a", "b"], ["b", "c"] ]. values = [2.0, 3.0]. queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
Floyd算法求解传递闭包
输入等式可以看做一个有向图
例如等式a / b = 2.0,可以转化为两条边:<a, b>,<b, a>,其长度分别为2.0,0.5
遍历equations与values,利用g数组保存有向图中各边的长度,利用vset记录顶点集合
最后调用Floyd算法即可
def calcEquation(self, equations, values, query): """ :type equations: List[List[str]] :type values: List[float] :type query: List[List[str]] :rtype: List[float] """ g = collections.defaultdict(lambda: collections.defaultdict(int)) vset = set() for e, v in zip(equations, values): g[e[0]][e[1]] = v g[e[1]][e[0]] = 1.0 / v vset.add(e[0]) vset.add(e[1]) for k in vset: g[k][k] = 1.0 for s in vset: for t in vset: if g[s][k] and g[k][t]: g[s][t] = g[s][k] * g[k][t] ans = [] for s, t in query: ans.append(g[s][t] if g[s][t] else -1.0) return ans

X. DFS
http://blog.csdn.net/mebiuw/article/details/52512370
这道题首先需要做的工作是,已知a/b=x的情况下,推断出b/a=1/x的情况。将所有a作为被除数的情况下能作为除数的全部集合起来。
然后就有搜索的方式(如DFS),搜索有没有一个这样的链:
a/c = a/x1 x1/x2 x2/x3*…..*xn/c
这样就能推导出最终的结果了
https://discuss.leetcode.com/topic/59146/java-ac-solution-using-graph
If a/b = 2.0 and b/c = 3.0, we can treat a,b,c as vertices.
edge(a,b) weight 2.0, edge(b,c) weight 3.0
backward edge(b,a) weight 1/2.0, edge(c,b) weight 1/3.0
query a,c is a path from a to c, distance (a,c) = weight(a,b) * weight(b,c)
public double[] calcEquation(String[][] equations, double[] values, String[][] queries) {
    double[] res = new double[queries.length];
    if(equations.length == 0) return res;
    Map<String, List<Edge>> adjs = new HashMap();
    for(int i=0;i<equations.length;i++){
        String v = equations[i][0];
        String u = equations[i][1];
        Edge ef = new Edge(u, values[i]);
        Edge eb = new Edge(v, 1.0/values[i]);
        if(adjs.containsKey(v)){
            adjs.get(v).add(ef);
        } else {
            List<Edge> adjsV = new ArrayList();
            adjsV.add(ef);
            adjs.put(v, adjsV);
        }
        if(adjs.containsKey(u)){
            adjs.get(u).add(eb);
        } else {
            List<Edge> adjsU = new ArrayList();
            adjsU.add(eb);
            adjs.put(u, adjsU);
        }
    }
    for(int i=0;i<queries.length;i++){
        String s = queries[i][0];
        String t = queries[i][1];
        Set<String> visited = new HashSet();
        dfs(adjs,visited, s, t, 1.0,i, res);
        if(res[i] == 0 && s != t) res[i] = -1.0;
    }

    return res;
}
private void dfs(Map<String, List<Edge>> adjs,Set<String> visited, String s, String  t, double distance, int index, double[] res){
    if(s.equals(t)) { // start, end, result,
        res[index]  = distance;
    }
    if(visited.contains(s)) return;
    visited.add(s);
    if(!adjs.containsKey(s) || !adjs.containsKey(t)) {
        res[index] = -1.0;
        return;
    }
    List<Edge> adjsV = adjs.get(s);
    Iterator<Edge> iter = adjsV.iterator();
    while(iter.hasNext()){
        Edge e = iter.next();
        dfs(adjs,visited, e.to, t, distance * e.weight,index, res);
    }
class Edge{
String to;
double weight;
Edge(String t, double w){
to = t;
weight = w;
}
}
https://discuss.leetcode.com/topic/58321/java-ac-solution-with-explanation
The logic I have used is to construct a Map of maps, that contains all possible a/b and b/a from the given input and their values.
For the given input
equations = [ ["a", "b"], ["b", "c"] ]. values = [2.0, 3.0]
The map that gets constructed is :
[a: [b:2.0]
b: [a:0.5], [c:3.0]
c: [b:0.333]]
For each key in the outer map, the value represents a map, that denotes all possible denominators for the key and the corresponding key/value.
With this map constructed, the logic for evaluating a query is simple in a dfs style:
To find any m/n, if the map of m contains x1, x2, x3
then
m/n = m/x1 * x1/n if this gives a valid result or m/x2 * x2/n or m/x3 * x3/n
public static double[] calcEquation(String[][] equations, double[] values, String[][] query) {
        Map<String, Map<String, Double>> numMap = new HashMap<>();
        int i = 0;
        for(String[] str : equations) {
            insertPairs(numMap, str[0], str[1], values[i]);
            insertPairs(numMap, str[1], str[0], 1.0/values[i]);
            i++;
        }

        double[] res = new double[query.length];
        i = 0;
        for(String[] q: query) {
            Double resObj = handleQuery(q[0], q[1], numMap, new HashSet<>());
            res[i++] = (resObj != null) ? resObj : -1.0;
        }
        return res;
    }

    public static void insertPairs(Map<String, Map<String, Double>> numMap, String num, String denom, Double value) {
        Map<String, Double> denomMap = numMap.get(num);
        if(denomMap == null) {
            denomMap = new HashMap<>();
            numMap.put(num, denomMap);
        }
        denomMap.put(denom, value);
    }

    public static Double handleQuery(String num, String denom, Map<String, Map<String, Double>> numMap, Set<String> visitedSet) {
        String dupeKey = num+":"+denom;
        if(visitedSet.contains(dupeKey)) return null;
        if(!numMap.containsKey(num) || !numMap.containsKey(denom)) return null;
        if(num.equals(denom)) return 1.0;

        Map<String, Double> denomMap = numMap.get(num);

        for(String key : denomMap.keySet()) {
            visitedSet.add(dupeKey);
            Double res = handleQuery(key, denom, numMap, visitedSet);
            if(res != null) {
                return denomMap.get(key) * res;
            }
            visitedSet.remove(dupeKey);
        }
        return null;
    }
https://discuss.leetcode.com/topic/58445/java-solution-using-hashmap-and-dfs
(1) Build the map, the key is dividend, the value is also a map whose key is divisor and value is its parameter. For example, a / b = 2.0, the map entry is <"a", <"b", 2.0>>. To make searching and calculation easier, we also put b / a = 0.5 into the map.
(2) for each query, use DFS to search divisors recursively
https://discuss.leetcode.com/topic/58321/java-ac-solution-with-explanation
public static double[] calcEquation(String[][] equations, double[] values, String[][] query) {
        Map<String, Map<String, Double>> numMap = new HashMap<>();
        int i = 0;
        for(String[] str : equations) {
            insertPairs(numMap, str[0], str[1], values[i]);
            insertPairs(numMap, str[1], str[0], 1.0/values[i]);
            i++;
        }

        double[] res = new double[query.length];
        i = 0;
        for(String[] q: query) {
            Double resObj = handleQuery(q[0], q[1], numMap, new HashSet<>());
            res[i++] = (resObj != null) ? resObj : -1.0;
        }
        return res;
    }

    public static void insertPairs(Map<String, Map<String, Double>> numMap, String num, String denom, Double value) {
        Map<String, Double> denomMap = numMap.get(num);
        if(denomMap == null) {
            denomMap = new HashMap<>();
            numMap.put(num, denomMap);
        }
        denomMap.put(denom, value);
    }

    public static Double handleQuery(String num, String denom, Map<String, Map<String, Double>> numMap, Set<String> visitedSet) {
        String dupeKey = num+":"+denom;
        if(visitedSet.contains(dupeKey)) return null;
        if(!numMap.containsKey(num) || !numMap.containsKey(denom)) return null;
        if(num.equals(denom)) return 1.0;

        Map<String, Double> denomMap = numMap.get(num);
        visitedSet.add(dupeKey);
        for(String key : denomMap.keySet()) {
            Double res = handleQuery(key, denom, numMap, visitedSet);
            if(res != null) {//\\
                return denomMap.get(key) * res;
            }
        }
        visitedSet.remove(dupeKey);
        return null;
    }
https://discuss.leetcode.com/topic/58445/java-solution-using-hashmap-and-dfs
https://discuss.leetcode.com/topic/58399/share-my-straightforward-java-dfs-solution-very-similar-to-the-332-reconstruct-itinerary
http://blog.csdn.net/yeqiuzs/article/details/52506433
用HashMap 存储图的邻接表,并用创建图节点的visited标记。这里是图节点value是string,用数组表示visited不合适,故用hashmap<string,boolean>
  1. Map<String, Map<String, Double>> map = new HashMap<>();//邻接表  
  2.   
  3. public double[] calcEquation(String[][] equations, double[] values, String[][] query) {  
  4.     Set<String> set = new HashSet<String>();//记录表达式中出现的字符串  
  5.     for (int i = 0; i < equations.length; i++) {//建图  
  6.         set.add(equations[i][0]);  
  7.         set.add(equations[i][1]);  
  8.         Map<String, Double> m;  
  9.         if (map.containsKey(equations[i][0])) {  
  10.             m = map.get(equations[i][0]);  
  11.         } else {  
  12.             m = new HashMap<String, Double>();  
  13.         }  
  14.         m.put(equations[i][1], values[i]);  
  15.         map.put(equations[i][0], m);  
  16.   
  17.         if (map.containsKey(equations[i][1])) {  
  18.             m = map.get(equations[i][1]);  
  19.         } else {  
  20.             m = new HashMap<String, Double>();  
  21.         }  
  22.         m.put(equations[i][0], 1.0 / values[i]);  
  23.         map.put(equations[i][1], m);  
  24.   
  25.     }  
  26.   
  27.     double result[] = new double[query.length];  
  28.     for (int i = 0; i < query.length; i++) {  
  29.   
  30.         //初始化visited标记  
  31.         Iterator<String> it = set.iterator();  
  32.         Map<String, Boolean> visited = new HashMap<String, Boolean>();  
  33.         while (it.hasNext()) {  
  34.             visited.put(it.next(), false);  
  35.         }  
  36.   
  37.         if (query[i][0].equals(query[i][1]) && set.contains(query[i][0])) {  
  38.             result[i] = 1;  
  39.             continue;  
  40.         }  
  41.         //dfs  
  42.         double res = dfs(query[i][0], query[i][1], 1, visited);  
  43.         result[i] = res;  
  44.     }  
  45.     return result;  
  46. }  
  47.   
  48. public double dfs(String s, String t, double res, Map<String, Boolean> visited) {  
  49.     if (map.containsKey(s) && !visited.get(s)) {  
  50.         visited.put(s, true);  
  51.         Map<String, Double> m = map.get(s);  
  52.         if (m.containsKey(t)) {  
  53.             return res * m.get(t);  
  54.         } else {  
  55.             Iterator<String> keys = m.keySet().iterator();  
  56.             while (keys.hasNext()) {  
  57.                 String key = keys.next();  
  58.                 double state = dfs(key, t, res * m.get(key), visited);  
  59.                 if (state != -1.0) {  
  60.                     return state;  
  61.                 }  
  62.             }  
  63.         }  
  64.     } else {  
  65.         return -1.0;  
  66.     }  
  67.     return -1.0;  
  68. }  

X. BFS
http://www.jiuzhang.com/solutions/evaluate-division
    public void addArc(Map<String, Map<String, Double>> graph, String vexStart, String vexEnd, double value) {
        Map<String, Double> arcMap;
        if (graph.containsKey(vexStart)) {
            arcMap = graph.get(vexStart);
        } else {
            arcMap = new HashMap<>();
        }
        arcMap.put(vexEnd, value);
        graph.put(vexStart, arcMap);
    }

    public double getValue(Map<String, Map<String, Double>> graph, String vexStart, String vexEnd) {
        if (graph.get(vexStart) == null || graph.get(vexEnd) == null) {
            return -1;
        }

        Queue<String> queue = new LinkedList<>();   //queue uesd for bfs
        Map<String, Double> value = new HashMap<>();    //distance from vexStart
        Set<String> validation = new HashSet<>();   //check if the vertex has been in the queue

        //init
        queue.add(vexStart);
        validation.add(vexStart);
        value.put(vexStart, 1d);

        String currentNode, nextNode;
        while (!queue.isEmpty()) {
            currentNode = queue.remove();
            for (Map.Entry<String, Double> arc : graph.get(currentNode).entrySet()) {
                nextNode = arc.getKey();
                value.put(nextNode, value.get(currentNode) * arc.getValue());
                if (nextNode.equals(vexEnd)) {
                    return value.get(vexEnd);
                } else if (!validation.contains(nextNode)) {
                    queue.add(nextNode);
                    validation.add(nextNode);
                }
            }
        }
        return -1;
    }

    public double[] calcEquation(String[][] equations, double[] values, String[][] queries) {

        Map<String, Map<String, Double>> graph = new HashMap<>();

        for (int i = 0; i < equations.length; i++) {
            //add arcs for both directions
            addArc(graph, equations[i][0], equations[i][1], values[i]);
            addArc(graph, equations[i][1], equations[i][0], 1 / values[i]);
        }

        double[] answer = new double[queries.length];
        for (int i = 0; i < answer.length; i++) {
            answer[i] = getValue(graph, queries[i][0], queries[i][1]);
        }

        return answer;
    }

http://xiadong.info/2016/09/leetcode-399-evaluate-division/
    // 由于对于string的比较等操作很费时, 所以用一个map把string与int对应起来.
    unordered_map<string, int> nodes;
public:
    vector<double> calcEquation(vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries) {
        for(int i = 0; i < equations.size(); i++){
            // 给每一个string分配一个下标
            // 注意这里有个隐藏bug, 假如map/unordered_map对象m中不包含a,
            // 那么在使用m[a]时实际上是已经创建一个a的key和对应的value, 导致size加1
            // 所以如果我们想让第n个加入的元素的value为n-1的话,
            // 需要赋值m.size() - 1而不是m.size()
            if(!nodes.count(equations[i].first)){
                nodes[equations[i].first] = nodes.size() - 1;
            }
            if(!nodes.count(equations[i].second)){
                nodes[equations[i].second] = nodes.size() - 1;
            }
        }
        vector<vector<double>> g(nodes.size(), vector<double>(nodes.size(), -1.0));
        for(int i = 0; i < equations.size(); i++){
            // 构建邻接矩阵
            g[getNode(equations[i].first)][getNode(equations[i].second)] = values[i];
            g[getNode(equations[i].second)][getNode(equations[i].first)] = 1 / values[i];
        }
        vector<double> ret(queries.size());
        for(int i = 0; i < queries.size(); i++){
            string a = queries[i].first, b = queries[i].second;
            if(!nodes.count(a) || !nodes.count(b)){
                // 如果出现了不存在的节点
                ret[i] = -1.0;
            }
            else{
                // 使用BFS来搜索路径
                ret[i] = BFS(g, getNode(a), getNode(b));
            }
        }
        return ret;
    }
    
    int getNode(string s){
        return nodes[s];
    }
    
    double BFS(vector<vector<double>> &g, int a, int b){
        // 如果是同一个节点就直接返回
        if(a == b) return 1.0;
        int n = g.size();
        vector<int> visited(n, 0); // 用于保存是否访问过节点
        queue<int> q; // BFS队列, 保存节点下标
        queue<double> v; // 用于保存从a到BFS队列中相应的节点的路径乘积
        q.push(a);
        visited[a] = 1;
        v.push(1.0);
        while(!q.empty()){
            int node = q.front();
            double value = v.front();
            for(int i = 0; i < n; i++){
                if(visited[i] || g[node][i] == -1.0) continue; // 节点i已经访问过或者没有边到达i
                visited[i] = 1;
                q.push(i);
                double len = value * g[node][i]; // 从a到i的路径权值乘积
                // 添加新的边
                g[a][i] = len;
                g[i][a] = 1 / len;
                if(i == b){ // 抵达b点
                    return len;
                }
                v.push(len);
            }
            q.pop();
            v.pop();
        }
        return -1.0;
    }

X. Floyd–Warshall DP
https://discuss.leetcode.com/topic/58981/java-solution-using-floyd-warshall-algorithm
functional programming in java is very slow
Using a variant of Floyd–Warshall algorithm, to find the distance between each reachable pair:
    public double[] calcEquation(String[][] equations, double[] values, String[][] queries) {
        HashMap<String, HashMap<String, Double>> graph = new HashMap<>();
        Function<String, HashMap<String, Double>> function = s -> new HashMap<>();
        for (int i = 0; i < equations.length; i++) {
            graph.computeIfAbsent(equations[i][0], function).put(equations[i][0], 1.0);
            graph.computeIfAbsent(equations[i][1], function).put(equations[i][1], 1.0);
            graph.get(equations[i][0]).put(equations[i][1], values[i]);
            graph.get(equations[i][1]).put(equations[i][0], 1 / values[i]);
        }
        for (String mid : graph.keySet()) {
            for (String src : graph.get(mid).keySet()) {
                for (String dst : graph.get(mid).keySet()) {
                    double val = graph.get(src).get(mid) * graph.get(mid).get(dst);
                    graph.get(src).put(dst, val);
                }
            }
        }
        double[] result = new double[queries.length];
        for (int i = 0; i < result.length; i++) {
            if (!graph.containsKey(queries[i][0])) {
                result[i] = -1;
            } else {
                result[i] = graph.get(queries[i][0]).getOrDefault(queries[i][1], -1.0);
            }
        }
        return result;
    }
https://discuss.leetcode.com/topic/58482/9-lines-floyd-warshall-in-python
A variation of Floyd–Warshall, computing quotients instead of shortest paths. Submitted once, accepted in 35 ms.
def calcEquation(self, equations, values, queries):
    quot = collections.defaultdict(dict)
    for (num, den), val in zip(equations, values):
        quot[num][num] = quot[den][den] = 1.0
        quot[num][den] = val
        quot[den][num] = 1 / val
    for k, i, j in itertools.permutations(quot, 3):
        if k in quot[i] and j in quot[k]:
            quot[i][j] = quot[i][k] * quot[k][j]
    return [quot[num].get(den, -1.0) for num, den in queries]

Variation without the if (submitted twice, accepted in 68 and 39 ms):
def calcEquation(self, equations, values, queries):
    quot = collections.defaultdict(dict)
    for (num, den), val in zip(equations, values):
        quot[num][num] = quot[den][den] = 1.0
        quot[num][den] = val
        quot[den][num] = 1 / val
    for k in quot:
        for i in quot[k]:
            for j in quot[k]:
                quot[i][j] = quot[i][k] * quot[k][j]
    return [quot[num].get(den, -1.0) for num, den in queries]
Could save a line with for i, j in itertools.permutations(quot[k], 2) but it's longer and I don't like it as much here.


X. union-find
I think the key point to induct your algorithm is to find a common divisor ( the root) for the queries. Clever idea :)
We can avoid traverse the entire map by plug in children information to parent. @iambright
This my java implementation based on your idea. Further, I use weighted UnionFind with path compression in order to speed up union and find operation.
    Map<String, GraphNode> map = null;
    public double[] calcEquation(String[][] equations, double[] values, String[][] queries) {
        double[] res = new double[queries.length];
        map = new HashMap<String, GraphNode>();
        for (int i = 0; i < equations.length; i++){
            String a = equations[i][0];
            String b = equations[i][1];
            if (!map.containsKey(a) && !map.containsKey(b)){
                GraphNode nodeA = new GraphNode(values[i]);
                GraphNode nodeB = new GraphNode(1);
                map.put(a, nodeA);
                map.put(b, nodeB);
                nodeA.parent = nodeB;
                nodeB.children.add(nodeA);
            }else if (!map.containsKey(b)){
                GraphNode nodeA = map.get(a);
                GraphNode nodeB = new GraphNode(nodeA.value / values[i]);
                GraphNode parentA = root(nodeA);
                nodeB.parent = parentA;
                parentA.children.add(nodeB);
                map.put(b, nodeB);
            }else if (!map.containsKey(a)){
                GraphNode nodeB = map.get(b);
                GraphNode nodeA = new GraphNode(nodeB.value * values[i]);
                GraphNode parentB = root(nodeB);
                nodeA.parent = parentB;
                parentB.children.add(nodeB);
                map.put(a, nodeA);
            }else {
                union(map.get(a), map.get(b), values[i]);
            }
        }
        for (int i = 0; i < queries.length; i++){
            String a = queries[i][0];
            String b = queries[i][1];
            if (!map.containsKey(a) || !map.containsKey(b) || root(map.get(a)) != root(map.get(b))){
                res[i] = -1.0;
            }else {
                res[i] = map.get(a).value / map.get(b).value;
            }
        }
        return res;
    }
    private class GraphNode{
        double value;
        GraphNode parent;
        List<GraphNode> children;
        int size;
        GraphNode(double value){
            this.value = value;
            size = 1;
            children = new ArrayList<>(Arrays.asList(this));
            parent = this;
        }
    }
    private GraphNode root(GraphNode node){
        while (node != node.parent){
            node.parent = node.parent.parent;
            node = node.parent;
        }
        return node;
    }
    private void union(GraphNode node1, GraphNode node2, double value){
        GraphNode parent1 = root(node1);
        GraphNode parent2 = root(node2);
        if (parent1 == parent2){
            return ;
        }
        if (parent1.size < parent2.size){
            unionHelper(node1, node2, value);
        }else {
            unionHelper(node2, node1, 1/value);
        }
    }
    private void unionHelper(GraphNode node1, GraphNode node2, double value){
        GraphNode parent1 = root(node1);
        GraphNode parent2 = root(node2);
        double ratio = node2.value * value / node1.value;
        for (GraphNode child : parent1.children){
            child.value *= ratio;
            child.parent = parent2;
            parent2.children.add(child);
            parent2.size++;
        }
    }
 I added a path compression optimization that should bring down the complexity.





No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) LeetCode Hard (39) Recursive Algorithm (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) Post-Order Traverse (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) Binary Indexed Trees (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts