http://www.programming-algorithms.net/article/41909/D-ary-heap
d-ary heap behaves as a priority queue. Special case of d-ary heap () is binary heap.
d-ary heap behaves as a priority queue. Special case of d-ary heap () is binary heap.
D-ary heap is usually implemented using array (let's suppose it is indexed starting at 0). Than for every node of the heap placed at index holds, that its parent is placed at index and its descendands are placed at indexes . It is also convenient, if the heap arity is a power of 2, because than we can easily replace multiplications used in the tree traversal by binary shifts.
005.
public
class
DAryHeap<ENTITY
extends
Comparable> {
006.
007.
private
final
static
int
EXPAND_RATIO =
2
;
//how many times should be the underlying array expanded
008.
private
final
static
double
COLLAPSE_RATIO =
0.25
;
//how empty must the heap be, to be the underlying collapsed
009.
private
Object[] array;
010.
private
int
d;
//parameter d
011.
private
int
size;
//size of the heap
012.
private
int
initialSize;
013.
014.
/**
015.
* Constructor
016.
* @param arraySize initial capacity of the heap
017.
*/
018.
public
DAryHeap(
int
initialSize,
int
d) {
019.
if
(d <
2
) {
020.
throw
new
IllegalArgumentException(
"D must be at least 2."
);
021.
}
022.
this
.d = d;
023.
this
.array =
new
Object[initialSize];
024.
this
.initialSize = initialSize;
025.
this
.size =
0
;
026.
}
027.
028.
/**
029.
* Insert element into the heap
030.
* Complexity: O(log(n))
031.
* @param i element to be inserted
032.
*/
033.
public
void
insert(ENTITY i) {
034.
if
(array.length == size) {
035.
expand();
036.
}
037.
size++;
038.
int
index = size -
1
;
039.
int
parentIndex = getParentIndex(index);
040.
while
(index !=
0
&& i.compareTo(array[parentIndex]) <
0
) {
//while the element is less then its parent
041.
array[index] = array[parentIndex];
//place parent one level down
042.
index = parentIndex;
//and repeat the procedure on the next level
043.
parentIndex = getParentIndex(index);
044.
}
045.
array[index] = i;
//insert the element at the appropriate place
046.
}
047.
048.
/**
049.
* Return the top element and remove it from the heap
050.
* Complexity: O(log(n))
051.
* @return top element
052.
*/
053.
public
ENTITY returnTop() {
054.
if
(size ==
0
) {
055.
throw
new
IllegalStateException(
"Heap is empty"
);
056.
}
057.
ENTITY tmp = (ENTITY) array[
0
];
058.
array[
0
] = array[size -
1
];
059.
size--;
060.
if
(size < array.length * COLLAPSE_RATIO && array.length / EXPAND_RATIO > initialSize) {
061.
collapse();
062.
}
063.
repairTop(
0
);
064.
return
tmp;
065.
}
066.
067.
/**
068.
* Merge two heaps
069.
* Complexity: O(n)
070.
* @param heap heap to be merged with this heap
071.
*/
072.
public
void
merge(DAryHeap<ENTITY> heap) {
073.
Object[] newArray =
new
Object[array.length + heap.array.length];
074.
System.arraycopy(array,
0
, newArray,
0
, size);
075.
System.arraycopy(heap.array,
0
, newArray, size, heap.size);
076.
size = size + heap.size;
077.
array = newArray;
078.
//build heap
079.
for
(
int
i = newArray.length / d; i >=
0
; i--) {
080.
repairTop(i);
081.
}
082.
}
083.
084.
/**
085.
* Return index of the parent element
086.
* @param index index of element, for which we want to return index of its parent
087.
* @return index of the parent element
088.
*/
089.
private
int
getParentIndex(
int
index) {
090.
return
(index -
1
) / d;
091.
}
092.
093.
/**
094.
* Place the top of the heap at a correct place withing the heap (repair the heap)
095.
* @param bottom last index of the array, which can be touched (is in the heap)
096.
* @param topIndex index of the top of the heap
097.
*/
098.
private
void
repairTop(
int
topIndex) {
099.
Comparable tmp = (Comparable) array[topIndex];
100.
int
succ = findSuccessor(topIndex * d +
1
, topIndex * d + d);
101.
while
(succ < size && tmp.compareTo(array[succ]) >
0
) {
102.
array[topIndex] = array[succ];
103.
topIndex = succ;
104.
succ = findSuccessor(succ * d +
1
, succ * d + d);
105.
}
106.
array[topIndex] = tmp;
107.
}
108.
109.
/**
110.
* Return descendant with the least value
111.
* @param from index of the first descendant
112.
* @param to index of the last descendant
113.
* @return index of the descendant with least value
114.
*/
115.
private
int
findSuccessor(
int
from,
int
to) {
116.
int
succ = from;
117.
for
(
int
i = from +
1
; i <= to && i < size; i++) {
118.
if
(((Comparable) array[succ]).compareTo((Comparable) array[i]) >
0
) {
119.
succ = i;
120.
}
121.
}
122.
return
succ;
123.
}
124.
125.
/**
126.
* Expand the underlying array
127.
*/
128.
private
void
expand() {
129.
array = Arrays.copyOf(array, array.length * EXPAND_RATIO);
130.
}
131.
132.
/**
133.
* Collapse the underlying array
134.
*/
135.
private
void
collapse() {
136.
array = Arrays.copyOf(array, array.length / EXPAND_RATIO);
137.
}
138.
139.
@Override
140.
public
String toString() {
141.
StringBuilder builder =
new
StringBuilder();
142.
for
(
int
i =
0
; i < size; i++) {
143.
builder.append(array[i]).append(
" "
);
144.
}
145.
return
builder.toString();
146.
}
147.
}