Check if a number can be expressed as x raised to power y


Check if a number can be expressed as x^y (x raised to power y) - GeeksforGeeks
Given a positive integer n, find if it can be expressed as xy where y > 1 and x > 0. x and y both are integers.

Check if the number is even or odd, initialize X with 2 or 3 based on that, and then increment X by 2. It will directly reduce the calculations to half.
Also, better approach is to find the prime factors of N, and then use them to find all the X such that X^Y=N.
An alternative approach to the problem could be finding the prime factorization of number n,
i.e. say the prime factorization of n= p1^x1*p2^x2*.......*pk^xk ,
then the number could only be expressed as x^y if and only if gcd(x1,x2,....,xk)!=1;
i.e. if the gcd is 1 or number is prime then it can't be expressed as x^y .
Moreover the time complexity of finding prime factorization is O(sqrt(n)) and gcd is log(n).Finding prime factorization could be improved using some sieve like erasthothenes.
int gcd(int a,int b){
if(a<b){
int t=a;a=b;b=t;
}
if(b==0)
return a;
return gcd(b,a%b);
}
int test_if_power(int n){
bool flag=true;
int t=n;
int curr_gcd=INT_MAX;
// if n==1 then it can't be expresses as x^y for y>1
if(n==1)
    flag=false;
if(n%2==0){
int p=0;
while(n%2==0)
{
n=n/2;
p++;
}
// find the power of 2 in the prime factorization of n
if(p==1)
flag=false;
if(curr_gcd==INT_MAX)
curr_gcd=p;
}

for(int i=3;i<=sqrt(n);i+=2){
if(n%i==0){
int p=0;
while(n%i==0){
n/=i;
p++;
}
// if for any prime factor p the power is 1 then n can not be expressed as x^y
if(p==1)
flag=false;
// if i is the first prime factor of p then set the gcd to power of i;
if(curr_gcd==INT_MAX)
curr_gcd=p;
else
curr_gcd=gcd(p,curr_gcd);
//find the gcd of curr_gcd and the power of prime factor i;

}
}
if(n>2){
flag=false;
}
if(!flag){
// return in case flag is false or curr_gc is 1;
return 0;
}
if(curr_gcd!=1)
cout<<t<<" ";
}



One optimization in above solution is to avoid call to pow() by multiplying p with x one by one.
bool isPower(unsigned int n)
{
    // Base case
    if (n <= 1) return true;
    // Try all numbers from 2 to sqrt(n) as base
    for (int x=2; x<=sqrt(n); x++)
    {
        unsigned  p = x;
        // Keep multiplying p with x while is smaller
        // than or equal to x
        while (p <= n)
        {
            p *= x;
            if (p == n)
                return true;
        }
    }
    return false;
}
The idea is simple try all numbers x starting from 2 to square root of n (given number). For every x, try x^y where y starts from 2 and increases one by one until either x^y becomes n or greater than n.
// Returns true if n can be written as x^y
bool isPower(unsigned n)
{
    if (n==1)  return true;
    // Try all numbers from 2 to sqrt(n) as base
    for (int x=2; x<=sqrt(n); x++)
    {
        unsigned y = 2;
        unsigned p = pow(x, y);
        // Keep increasing y while power 'p' is smaller
        // than n.
        while (p<=n && p>0)
        {
            if (p==n)
                return true;
            y++;
            p = pow(x, y);
         }
    }
    return false;
}
Check if a number can be expressed as x raised to power y
Given a positive integer, find if it can be expressed by integers x and y as x^y where
y > 1 and x > 0.

Example:
Consider the number: 125
Since 125 can be written as x^y where x = 5, y = 3, so return true.
Consider the number: 120
As 120 cannot be expressed as x^y for any integers x > 0 and y > 1, so return false.

    public static boolean isPower(int a) {
        int factor = 2;
        while (factor <= Math.sqrt(a)) {
            int number = a;
            while (number % factor == 0) {
                number /= factor;
            }
            if (number == 1) {
                return true;
            } else {
                factor++;
            }
        }
        return false;
    }
http://www.ideserve.co.in/learn/check-if-a-number-can-be-expressed-as-x-raised-to-power-y-set-2
Instead of repeated divisions as given in previous method, we can apply mathematical formula as described:
Given a number a, we have to find integers x and y, such that:
     a = x^y
If we take log on both sides, we get:
     log a = log (x^y)
     log a = y log x
     y = log a / log x
Hence, we have to find an integer x for which RHS gives an integer y.

Algorithm:
1: Starting with i = 2, if (log a / log i) is an integer then return true.
2: Else increment i by 1 till i < √a.
3: If no such i is found, return false.
    public static boolean isPowerMath(int a) {
        if (a == 1)
            return true;
        for (int i = 2; i <= Math.sqrt(a); i++) {
            double value = Math.log(a) / Math.log(i);
            if ((value - (int) value) < 0.000000001) {
                return true;
            }
        }
        return false;
    }
Read full article from Check if a number can be expressed as x^y (x raised to power y) - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts