Vertex Cover Problem | Set 1 (Introduction and Approximate Algorithm) - GeeksforGeeks


Vertex Cover Problem | Set 1 (Introduction and Approximate Algorithm) - GeeksforGeeks
A vertex cover of an undirected graph is a subset of its vertices such that for every edge (u, v) of the graph, either 'u' or 'v' is in vertex cover. Although the name is Vertex Cover, the set covers all edges of the given graph. Given an undirected graph, the vertex cover problem is to find minimum size vertex cover.
Approximate Algorithm for Vertex Cover:
1) Initialize the result as {}
2) Consider a set of all edges in given graph.  Let the set be E.
3) Do following while E is not empty
...a) Pick an arbitrary edge (u, v) from set E and add 'u' and 'v' to result
...b) Remove all edges from E which are either incident on u or v.
4) Return result 

// The function to print vertex cover
void Graph::printVertexCover()
{
    // Initialize all vertices as not visited.
    bool visited[V];
    for (int i=0; i<V; i++)
        visited[i] = false;
    list<int>::iterator i;
    // Consider all edges one by one
    for (int u=0; u<V; u++)
    {
        // An edge is only picked when both visited[u] and visited[v]
        // are false
        if (visited[u] == false)
        {
            // Go through all adjacents of u and pick the first not
            // yet visited vertex (We are basically picking an edge
            // (u, v) from remaining edges.
            for (i= adj[u].begin(); i != adj[u].end(); ++i)
            {
                int v = *i;
                if (visited[v] == false)
                {
                     // Add the vertices (u, v) to the result set.
                     // We make the vertex u and v visited so that
                     // all edges from/to them would be ignored
                     visited[v] = true;
                     visited[u]  = true;
                     break;
                }
            }
        }
    }
    // Print the vertex cover
    for (int i=0; i<V; i++)
        if (visited[i])
          cout << i << " ";
}
http://ideone.com/ItOB19
  1. std::vector<bool> get_vertex_cover() {
  2. std::vector<bool> visited(vertex_count, false);
  3. for (int u = 0; u < vertex_count; u++) {
  4. if (visited[u]) continue;
  5. for (int v : adj[u]) {
  6. if (visited[v]) continue;
  7. visited[v] = visited[u] = true;
  8. break;
  9. }
  10. }
  11. return visited;
  12. }
https://en.wikipedia.org/wiki/Vertex_cover
Formally, a vertex-cover of an undirected graph is a subset V′ of V such that if edge (u, v) is an edge of G, then u is in V′, or v is in V′, or both. The set V′ is said to "cover" the edges of G. The following figure shows examples of vertex covers in two graphs (and the set V' is marked with red).
Vertex-cover.svg
A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number \tau is the size of a minimum vertex cover. The following figure shows examples of minimum vertex covers in the previous graphs.
Minimum-vertex-cover.svg

图的覆盖是一些顶点(或边)的集合,使得图中的每一条边(每一个顶点)都至少接触集合中的一个顶点(边)。寻找最小的顶点覆盖的问题称为顶点覆盖问题,它是一个NP完全问题。
顶点覆盖和边覆盖分别与独立集合匹配问题有关。

Approximate evaluation
One can find a factor-2 approximation by repeatedly taking both endpoints of an edge into the vertex cover, then removing them from the graph. Put otherwise, we find a maximal matching M with a greedy algorithm and construct a vertex cover C that consists of all endpoints of the edges in M. In the following figure, a maximal matching M is marked with red, and the vertex cover C is marked with blue.

Vertex-cover-from-maximal-matching.svg
The set C constructed this way is a vertex cover: suppose that an edge e is not covered by C; then M ∪ {e} is a matching and e ∉ M, which is a contradiction with the assumption that M is maximal. Furthermore, if e = {uv} ∈ M, then any vertex cover – including an optimal vertex cover – must contain u or v (or both); otherwise the edge e is not covered. That is, an optimal cover contains at leastone endpoint of each edge in M; in total, the set C is at most 2 times as large as the optimal vertex cover.
http://mste.illinois.edu/mmckelve/applets/graphtheory/org/_3pq/jgrapht/alg/VertexCovers.java
https://code.google.com/p/gteditor/source/browse/trunk/externiallibsrc/org/jgrapht/alg/VertexCovers.java?r=11
       * Finds a 2-approximation for a minimal vertex cover of the specified
         * graph. The algorithm promises a cover that is at most double the size of
         * a minimal cover. The algorithm takes O(|E|) time.
         *
         * <p>
         * For more details see Jenny Walter, CMPU-240: Lecture notes for Language
         * Theory and Computation, Fall 2002, Vassar College, <a
         * href="http://www.cs.vassar.edu/~walter/cs241index/lectures/PDF/approx.pdf">
         * http://www.cs.vassar.edu/~walter/cs241index/lectures/PDF/approx.pdf</a>.
        public static <V, E> Set<V> find2ApproximationCover(Graph<V, E> g) {
                // C <-- {}
                Set<V> cover = new HashSet<V>();

                // G'=(V',E') <-- G(V,E)
                Subgraph<V, E, Graph<V, E>> sg = new Subgraph<V, E, Graph<V, E>>(g,
                                null, null);

                // while E' is non-empty
                while (sg.edgeSet().size() > 0) {
                        // let (u,v) be an arbitrary edge of E'
                        E e = sg.edgeSet().iterator().next();

                        // C <-- C U {u,v}
                        V u = g.getEdgeSource(e);
                        V v = g.getEdgeTarget(e);
                        cover.add(u);
                        cover.add(v);

                        // remove from E' every edge incident on either u or v
                        sg.removeVertex(u);
                        sg.removeVertex(v);
                }

                return cover; // return C
        }

         * Finds a greedy approximation for a minimal vertex cover of a specified
         * graph. At each iteration, the algorithm picks the vertex with the highest
         * degree and adds it to the cover, until all edges are covered.
         *
         * <p>
         * The algorithm works on undirected graphs, but can also work on directed
         * graphs when their edge-directions are ignored. To ignore edge directions
         * you can use {@link org.jgrapht.Graphs#undirectedGraph(Graph)} or
         * {@link org.jgrapht.graph.AsUndirectedGraph}.
         * @return a set of vertices which is a vertex cover for the specified
         *         graph.
         */
        public static <V, E> Set<V> findGreedyCover(UndirectedGraph<V, E> g) {
                // C <-- {}
                Set<V> cover = new HashSet<V>();

                // G' <-- G
                UndirectedGraph<V, E> sg = new UndirectedSubgraph<V, E>(g, null, null);

                // compare vertices in descending order of degree
                VertexDegreeComparator<V, E> comp = new VertexDegreeComparator<V, E>(sg);

                // while G' != {}
                while (sg.edgeSet().size() > 0) {
                        // v <-- vertex with maximum degree in G'
                        V v = Collections.max(sg.vertexSet(), comp);

                        // C <-- C U {v}
                        cover.add(v);

                        // remove from G' every edge incident on v, and v itself
                        sg.removeVertex(v);
                }

                return cover;
        }

Exact Algorithms:
Although the problem is NP complete, it can be solved in polynomial time for following types of graphs.
1) Bipartite Graph
2) Tree Graph
DP: http://massivealgorithms.blogspot.com/2015/05/vertex-cover-problem-set-2-dynamic.html
Read full article from Vertex Cover Problem | Set 1 (Introduction and Approximate Algorithm) - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts