Check whether a given graph is Bipartite or not - GeeksforGeeks


Check whether a given graph is Bipartite or not - GeeksforGeeks
A Bipartite Graph is a graph whose vertices can be divided into two independent sets, U and V such that every edge (u, v) either connects a vertex from U to V or a vertex from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, or u belongs to V and v to U. We can also say that there is no edge that connects vertices of same set.

A bipartite graph is possible if the graph coloring is possible using two colors such that vertices in a set are colored with the same color.

Graph BFS:
Time Complexity of the above approach is same as that Breadth First Search. In above implementation is O(V^2) where V is number of vertices. If graph is represented using adjacency list, then the complexity becomes O(V+E).
1. Assign RED color to the source vertex (putting into set U).
2. Color all the neighbors with BLUE color (putting into set V).
3. Color all neighbor’s neighbor with RED color (putting into set U).
4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite)
http://likemyblogger.blogspot.com/2015/08/mj-23-bipartite-graph.html
    final static int V = 4; // No. of Vertices
 
    // This function returns true if graph G[V][V] is Bipartite, else false
    boolean isBipartite(int G[][],int src)
    {
        // Create a color array to store colors assigned to all veritces.
        // Vertex number is used as index in this array. The value '-1'
        // of  colorArr[i] is used to indicate that no color is assigned
        // to vertex 'i'.  The value 1 is used to indicate first color
        // is assigned and value 0 indicates second color is assigned.
        int colorArr[] = new int[V];
        for (int i=0; i<V; ++i)
            colorArr[i] = -1;
 
        // Assign first color to source
        colorArr[src] = 1;
 
        // Create a queue (FIFO) of vertex numbers and enqueue
        // source vertex for BFS traversal
        LinkedList<Integer>q = new LinkedList<Integer>();
        q.add(src);
 
        // Run while there are vertices in queue (Similar to BFS)
        while (q.size() != 0)
        {
 
            // Dequeue a vertex from queue
            int u = q.poll();
 
            // Find all non-colored adjacent vertices
            for (int v=0; v<V; ++v)
            {
                // An edge from u to v exists and destination v is
                // not colored
                if (G[u][v]==1 && colorArr[v]==-1)
                {
                    // Assign alternate color to this adjacent v of u
                    colorArr[v] = 1-colorArr[u];
                    q.add(v);
                }
 
                // An edge from u to v exists and destination v is
                // colored with same color as u
                else if (G[u][v]==1 && colorArr[v]==colorArr[u])
                    return false;
            }
        }
        // If we reach here, then all adjacent vertices can
        //  be colored with alternate color
        return true;
    }
BFS Java Code: http://www.sanfoundry.com/java-program-check-whether-graph-bipartite-using-bfs/
http://karmaandcoding.blogspot.com/2012/03/bipartite-graph-check.html
http://www.fgdsb.com/2015/01/03/check-whether-a-graph-is-bipartite-or-not/
DFS:
http://algs4.cs.princeton.edu/41undirected/Bipartite.java.html
http://www.sanfoundry.com/cpp-program-graph-bipartite-dfs/
    private boolean isBipartite;   // is the graph bipartite?
    private boolean[] color;       // color[v] gives vertices on one side of bipartition
    private boolean[] marked;      // marked[v] = true if v has been visited in DFS
    private int[] edgeTo;          // edgeTo[v] = last edge on path to v
    private Stack<Integer> cycle;  // odd-length cycle
    public Bipartite(Graph G) {
        isBipartite = true;
        color  = new boolean[G.V()];
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];

        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
            }
        }
        assert check(G);
    }

    private void dfs(Graph G, int v) { 
        marked[v] = true;
        for (int w : G.adj(v)) {

            // short circuit if odd-length cycle found
            if (cycle != null) return;

            // found uncolored vertex, so recur
            if (!marked[w]) {
                edgeTo[w] = v;
                color[w] = !color[v];
                dfs(G, w);
            } 

            // if v-w create an odd-length cycle, find it
            else if (color[w] == color[v]) {
                isBipartite = false;
                cycle = new Stack<Integer>();
                cycle.push(w);  // don't need this unless you want to include start vertex twice
                for (int x = v; x != w; x = edgeTo[x]) {
                    cycle.push(x);
                }
                cycle.push(w);
            }
        }
    }
http://www.keithschwarz.com/interesting/code/bipartite-verify/BipartiteVerify.java.html
    public static <T> boolean isBipartite(UndirectedGraph<T> g) {
        Map<T, Boolean> parityTable = new HashMap<T, Boolean>();
        for (T node: g)
            if (!parityTable.containsKey(node) && 
                !dfsExplore(node, g, parityTable, true))
                return false;
        return true;
    }
    private static <T> boolean dfsExplore(T node, UndirectedGraph<T> g,
                                          Map<T, Boolean> parityTable,
                                          boolean parity) {
        if (parityTable.containsKey(node))
            return parityTable.get(node).equals(parity);
        parityTable.put(node, parity);
        for (T endpoint: g.edgesFrom(node))
            if (!dfsExplore(endpoint, g, parityTable, !parity))
                return false;
        return true;
    }
http://www.sanfoundry.com/java-program-check-whether-graph-bipartite-using-2-color-algorithm/
http://www.cnblogs.com/EdwardLiu/p/6552027.html
input friends relations{{1,2}, {2,3}, {3,4}}
把人分成两拨,每拨人互相不认识,
所以应该是group1{1,3}, group2{2,4}
这道题应该是how to bipartite a graph
Taken from GeeksforGeeks
Following is a simple algorithm to find out whether a given graph is Birpartite or not using Breadth First Search (BFS) :-
  1. Assign RED color to the source vertex (putting into set U).
  2. Color all the neighbors with BLUE color (putting into set V).
  3. Color all neighbor’s neighbor with RED color (putting into set U).
  4. This way, assign color to all vertices such that it satisfies all the constraints of m way coloring problem where m = 2.
  5. While assigning colors, if we find a neighbor which is colored with same color as current vertex, then the graph cannot be colored with 2 vertices (or graph is not Bipartite).
Also, NOTE :-
-> It is possible to color a cycle graph with even cycle using two colors.
-> It is not possible to color a cycle graph with odd cycle using two colors.
EDIT :-
If a graph is not connected, it may have more than one bipartition. You need to check all those components separately with the algorithm as mentioned above.
So, for various disconnected sub-graph of the same graph, you need to perform this bipartition check on all of them separately using the same algorithm discussed above. All of those various disconnected sub-graph of the same graph will account for its own set of bipartition.
And, the graph will be termed bipartite, IF AND ONLY IF, each of its connected components are proved to be bipartite .
 6     HashSet<Integer> list1 = new HashSet<Integer>();
 7     HashSet<Integer> list2 = new HashSet<Integer>();
 8     
 9     public void bfs(int[][] relations) {
10         HashMap<Integer, HashSet<Integer>> graph = new HashMap<Integer, HashSet<Integer>>();
11         for (int[] each : relations) {
12             if (!graph.containsKey(each[0]))
13                 graph.put(each[0], new HashSet<Integer>());
14             if (!graph.containsKey(each[1]))
15                 graph.put(each[1], new HashSet<Integer>());
16             graph.get(each[0]).add(each[1]);
17             graph.get(each[1]).add(each[0]);
18         }
19         
20         
21         Queue<Integer> queue = new LinkedList<Integer>();
22         queue.offer(relations[0][0]);
23         list1.add(relations[0][0]);
24         HashSet<Integer> visited = new HashSet<Integer>();
25         visited.add(relations[0][0]);
26         int count = 1;
27         while (!queue.isEmpty()) {
28             int size = queue.size();
29             for (int i=0; i<size; i++) {
30                 int person = queue.poll();
31                 HashSet<Integer> friends = graph.get(person);
32                 for (int each : friends) {
33                     if (list1.contains(each)&&list1.contains(person) || list2.contains(each)&&list2.contains(person)) {
34                         list1.clear();
35                         list2.clear();
36                         return;
37                     }
38                         
39                     if (!visited.contains(each)) {
40                         if (count%2 == 1) list2.add(each);
41                         else list1.add(each);
42                         queue.offer(each);
43                         visited.add(each);
44                     }
45                 }
46             }
47             count++;
48         }
49     }
Graph Coloring | Set 1 (Introduction and Applications)
Read full article from Check whether a given graph is Bipartite or not - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts