Monday, October 24, 2016

LeetCode 440 - K-th Smallest in Lexicographical Order


https://leetcode.com/problems/k-th-smallest-in-lexicographical-order/
Given integers n and k, find the lexicographically k-th smallest integer in the range from 1 to n.
Note: 1 ≤ k ≤ n ≤ 109.
Example:
Input:
n: 13   k: 2

Output:
10

Explanation:
The lexicographical order is [1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9], so the second smallest number is 10.
https://discuss.leetcode.com/topic/64624/concise-easy-to-understand-java-5ms-solution-with-explaination
Actually this is a denary tree (each node has 10 children). Find the kth element is to do a k steps preorder traverse of the tree.
0_1477293053966_upload-40379731-118a-4753-bed9-1cb372790d4b
Initially, image you are at node 1 (variable: curr),
the goal is move (k - 1) steps to the target node x. (substract steps from k after moving)
when k is down to 0, curr will be finally at node x, there you get the result.
we don't really need to do a exact k steps preorder traverse of the denary tree, the idea is to calculate the steps between curr and curr + 1 (neighbor nodes in same level), in order to skip some unnecessary moves.
Main function
Firstly, calculate how many steps curr need to move to curr + 1.
  1. if the steps <= k, we know we can move to curr + 1, and narrow down k to k - steps.
  2. else if the steps > k, that means the curr + 1 is actually behind the target node x in the preorder path, we can't jump to curr + 1. What we have to do is to move forward only 1 step (curr * 10 is always next preorder node) and repeat the iteration.
calSteps function
  1. how to calculate the steps between curr and curr + 1?
    Here we come up a idea to calculate by level.
    Let n1 = curr, n2 = curr + 1.
    n2 is always the next right node beside n1's right most node (who shares the same ancestor "curr")
    (refer to the pic, 2 is right next to 1, 20 is right next to 19, 200 is right next to 199).
  2. so, if n2 <= n, what means n1's right most node exists, we can simply add the number of nodes from n1 to n2 to steps.
  3. else if n2 > n, what means n (the biggest node) is on the path between n1 to n2, add (n + 1 - n1) to steps.
  4. organize this flow to "steps += Math.min(n + 1, n2) - n1; n1 *= 10; n2 *= 10;"

public int findKthNumber(int n, int k) {
    int curr = 1;
    k = k - 1;
    while (k > 0) {
        int steps = calSteps(n, curr, curr + 1);
        if (steps <= k) {
            curr += 1;
            k -= steps;
        } else {
            curr *= 10;
            k -= 1;
        }
    }
    return curr;
}
//use long in case of overflow
public int calSteps(int n, long n1, long n2) {
    int steps = 0;
    while (n1 <= n) {
        steps += Math.min(n + 1, n2) - n1;
        n1 *= 10;
        n2 *= 10;
    }
    return steps;
}
https://discuss.leetcode.com/topic/64539/java-7ms-denary-trie-tree-solution-with-detailed-explanation
The solution used DFS to search in a trie tree. The trick is to skip the sub-tree if the (current index + node number of the sub-tree) is smaller than the k.
The key problem is - How to count the nodes in a sub-tree?
The trie tree was made up of two kinds of sub-tree, the complete sub-tree with each node either has ten or zero children and the incomplete sub-tree with some inner nodes can has 1 to 9 children.
The complete tree's nodes number is easy to get, it will be something like 1, 11, 111, 1111...(each node has ten children plus the root)
The incomplete tree can be calculated like the flowing example:
for n = 213, the tree will be something like this:
                                      $
  /                 /                /                 \
 1                 2                 3                 [4 ~ 9]                                 
 /\                 /\              /\                  /\
0, [1~9]         0,   1,[2~9]    0,[1~9]               ...
/      \          /   /           
[0~9]  ...     [0~9] [0~3] 
the sub-trees start with char '1' and '3'~'9' are complete trees, which '1' sub-tree with ranges in 1,10~19, 100~199 has 111 nodes and '3'~'9' each has 11 nodes (e.g. 3 with ranges in 3, 30~39).
the sub-tree starts with '2' is not full, i.e. the ranges are 2, 20~29, 200~213. But the '2' sub-tree still has a 'complete' tree like '3'~'9' with range in 2, 20~29, and we just need to add the remained leaf nodes which is (213%200)+1 or (213-200)+1.
The 200 is the most left node in the '2' sub-tree and 299 is the most right node in '2' sub-tree if it is complete.
it also showed the idea about how to judge a given sub-three is complete or incomplete:
We first assume all sub-trees are complete and test by following:
{
if (the most right node in a sub-tree is not greater than the number n) 

    the sub-tree is complete with nodes number  = 111..(log10(n)+1 1s)

else if (the most left node in a sub-tree is greater than the number n) 

    the sub-tree is complete with nodes number  = 11...  (log10(n) 1s)

else

    the sub-tree is incomplete with nodes number = 
n - (the most left node in the subree) + 1 + 11... (log10(n) 1s)
}
The nodes number in a complete tree can be cached.
Then we just need to recursively decrease k by the nodes number of the skipped
sub-tree until k reached 1.
Also be carefully the first layer is start from 1 while other layers are start from 0.
So we know the size of subtree at 1 is 111, and the size of every subtree at 3,...,9 is 11. Since the size of the whole tree is n=213, the size of subtree at 2 is simply the remainder : n-111*1-11*7
public class Solution {
    int countNum(int n){
        int i=0;
        while(n>0){
            n/=10;
            i++;
        }
        return i;
    }
    int getFullTreeNum(int depth){
        int sum=0, children=1;
        while(depth>0){
            sum+=children;
            children*=10;
            depth--;
        }
        return sum;
    }
    int getMax(int prefix, int depth){
        while(depth>0){
            prefix*=10;
            prefix+=9;
            depth--;
        }
        return prefix;
    }
    int getMin(int prefix, int depth){
        while(depth>0){
            prefix*=10;
            depth--;
        }
        return prefix;
    }
    int helper(int n, int k, int prefix, int depth){
        int lowNum=getFullTreeNum(depth), highNum=getFullTreeNum(depth-1);
        for(int i=(prefix==0?1:0);i<=9;i++){
            int nodeNum=0;
            if(getMax(prefix*10+i, depth-1)<=n){
                nodeNum=lowNum;
            }
            else if(getMin(prefix*10+i, depth-1)>n){
                nodeNum=highNum;
            }
            else{
                nodeNum=highNum+((n-getMin(prefix*10+i, depth-1))+1);
            }
            k-=nodeNum;
            if(k<=0){
                k+=nodeNum;
                if(k==1){
                    return prefix*10+i;
                }
                else {
                    return helper(n, k-1, prefix*10+i, depth-1);
                }
            }
        }
        return 0;
    }
    
    public int findKthNumber(int n, int k) {
        int depth=countNum(n);
        int index=0;
        return helper(n, k, 0, depth);
    }
http://www.cnblogs.com/grandyang/p/6031787.html
这道题是之前那道Lexicographical Numbers的延伸,之前让按字典顺序打印数组,而这道题让我们快速定位某一个位置,那么我们就不能像之前那道题一样,一个一个的遍历,这样无法通过OJ,这也是这道题被定为Hard的原因。那么我们得找出能够快速定位的方法,我们如果仔细观察字典顺序的数组,我们可以发现,其实这是个十叉树Denary Tree,就是每个节点的子节点可以有十个,比如数字1的子节点就是10到19,数字10的子节点可以是100到109,但是由于n大小的限制,构成的并不是一个满十叉树。我们分析题目中给的例子可以知道,数字1的子节点有4个(10,11,12,13),而后面的数字2到9都没有子节点,那么这道题实际上就变成了一个先序遍历十叉树的问题,那么难点就变成了如何计算出每个节点的子节点的个数,我们不停的用k减去子节点的个数,当k减到0的时候,当前位置的数字即为所求。现在我们来看如何求子节点个数,比如数字1和数字2,我们要求按字典遍历顺序从1到2需要经过多少个数字,首先把1本身这一个数字加到step中,然后我们把范围扩大十倍,范围变成10到20之前,但是由于我们要考虑n的大小,由于n为13,所以只有4个子节点,这样我们就知道从数字1遍历到数字2需要经过5个数字,然后我们看step是否小于等于k,如果是,我们cur自增1,k减去step;如果不是,说明要求的数字在子节点中,我们此时cur乘以10,k自减1,以此类推,直到k为0推出循环,此时cur即为所求:
    int findKthNumber(int n, int k) {
        int cur = 1;
        --k;
        while (k > 0) {
            long long step = 0, first = cur, last = cur + 1;
            while (first <= n) {
                step += min((long long)n + 1, last) - first;
                first *= 10;
                last *= 10;
            }
            if (step <= k) {
                ++cur;
                k -= step;
            } else {
                cur *= 10;
                --k; 
            }
        }
        return cur;
    }
https://discuss.leetcode.com/topic/64442/easy-to-understand-js-solution
// Calculates the amount of
// numbers <= n that starts with prefix.

function countForPrefix (n, prefix) {
    let a = parseInt(prefix);
    let b = a + 1;
    if (a > n || a === 0)
        return 0;

    let res = 1;
    a *= 10; b *= 10;
    while (a <= n) {
        res += Math.min(n + 1, b) - a;
        a *= 10; b *= 10;
    }

    return res;
}

// Constructs resulting number digit by digit
// starting with the most significant.

function findKthNumber (n, k) {
    let i, prefix = '';
    while (k !== 0) {
        for (i = 0; i <= 9; i++) {
            const count = countForPrefix(n, prefix + i);
            if (count < k)
                k -= count;
            else
                break;
        }
        prefix = prefix + i;
        k--; // number equal to prefix
    }

    return parseInt(prefix, 10);
}

http://bookshadow.com/weblog/2016/10/24/leetcode-k-th-smallest-in-lexicographical-order/


No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (985) Algorithm (795) Review (759) to-do (631) LeetCode - Review (506) Classic Algorithm (324) Dynamic Programming (292) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Search (81) Binary Tree (80) Graph Algorithm (74) Greedy Algorithm (72) DFS (66) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) Codility (54) BFS (53) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Recursive Algorithm (39) LeetCode Hard (38) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Hash (22) Post-Order Traverse (22) Binary Indexed Trees (21) Bisection Method (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) Follow Up (19) O(N) (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Find Rule (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Tree Without Tree Predefined (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts