Thursday, June 2, 2016

LeetCode 351 - Android Unlock Patterns


Related: Android patterns possible on 3x3 matrix of numbers
http://lcoj.tk/problems/android-unlock-patternselmirap/
Given Android 9 key lock screen and numbers m and n, where 1 <= m <= n <= 9 .
Count the total number of patterns of Android lock screen, which consist of minimum of m keys and maximum n keys.

Rules for valid pattern

  1. Each pattern must connect at least m keys and at most n keys
  2. All the keys must be distinct
  3. If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed
  4. The order of keys used matters.

Example:

| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

Valid move : 6 - 5 - 4 - 1 - 9 - 2

Line 1 - 9 is valid because it pass through key 5, which has been already selected in the pattern

Valid move : 2 - 4 - 1 - 3 - 6

Line 1 - 3 is valid because it pass through key 2, which has been already selected in the pattern

Invalid move : 4 - 1 - 3 - 6

Line 1 - 3 pass through key 2 which is not still selected in the pattern

Invalid move : 4 - 1 - 9 - 2

Line 1 - 9 pass through key 5 which is not still selected in the pattern
https://leetcode.com/discuss/104500/java-solution-with-clear-explanations-and-optimization-81ms
The optimization idea is that 1,3,7,9 are symmetric, 2,4,6,8 are also symmetric. Hence we only calculate one among each group and multiply by 4.
// cur: the current position // remain: the steps remaining int DFS(boolean vis[], int[][] skip, int cur, int remain) { if(remain < 0) return 0; if(remain == 0) return 1; vis[cur] = true; int rst = 0; for(int i = 1; i <= 9; ++i) { // If vis[i] is not visited and (two numbers are adjacent or skip number is already visited) if(!vis[i] && (skip[i][cur] == 0 || (vis[skip[i][cur]]))) { rst += DFS(vis, skip, i, remain - 1); } } vis[cur] = false; return rst; } public int numberOfPatterns(int m, int n) { // Skip array represents number to skip between two pairs int skip[][] = new int[10][10]; skip[1][3] = skip[3][1] = 2; skip[1][7] = skip[7][1] = 4; skip[3][9] = skip[9][3] = 6; skip[7][9] = skip[9][7] = 8; skip[1][9] = skip[9][1] = skip[2][8] = skip[8][2] = skip[3][7] = skip[7][3] = skip[4][6] = skip[6][4] = 5; boolean vis[] = new boolean[10]; int rst = 0; // DFS search each length from m to n for(int i = m; i <= n; ++i) { rst += DFS(vis, skip, 1, i - 1) * 4; // 1, 3, 7, 9 are symmetric rst += DFS(vis, skip, 2, i - 1) * 4; // 2, 4, 6, 8 are symmetric rst += DFS(vis, skip, 5, i - 1); // 5 } return rst; }
https://leetcode.com/discuss/104688/simple-and-concise-java-solution-in-69ms
The general idea is DFS all the possible combinations from 1 to 9 and skip invalid moves along the way.
We can check invalid moves by using a jumping table. e.g. If a move requires a jump and the key that it is crossing is not visited, then the move is invalid. Furthermore, we can utilize symmetry to reduce runtime, in this case it reduced from ~120ms to ~70ms.
https://leetcode.com/discuss/104311/java-easy-understand-dfs-solution-72ms
If we use the symmetry, we can only start from 1, 2 and 5 then multiply the results of 1 and 2 by 4. (170ms)
http://dartmooryao.blogspot.com/2016/05/leetcode-351-android-unlock-patterns.html
(1) Create an grid, list all condition paths. For example, if we are currently at node 1, and we want to go to node 3, then we need node 2 visited. We use condPaths[1][3] = 2; to represent this relationship.
(2) Use an boolean array to keep track of the nodes we have visited before.
(3) Count the path number from min to max seperately.
(4) Use recursion function, given current position, check all possible paths. If the next node is not visited yet, and it satisfies the constraint, then we can go to this path.
(5) Return 1 when we find the end of path.
    public int numberOfPatterns(int m, int n) {
        int[][] condPaths = getCondPath();
        boolean[] visited = new boolean[10];
        int totalCount = 0;
        for(int i=m; i<=n; i++){
            for(int j=1; j<=9; j++){
                totalCount += getPathCount(i, j, visited, condPaths);               
            }
        }
        return totalCount;
    }
  
    private int getPathCount(int pathN, int currPosi, boolean[] visited, int[][] condPaths){
        if(pathN == 1){ return 1; }
        int count = 0;
        visited[currPosi] = true;
        for(int i=1; i<visited.length; i++){
            if(!visited[i] && (condPaths[currPosi][i] == 0 || visited[condPaths[currPosi][i]])){
                count += getPathCount(pathN-1, i, visited, condPaths);
            }
        }
        visited[currPosi] = false;
        return count;
    }
  
    private int[][] getCondPath(){
        int[][] condPaths = new int[10][10];
        condPaths[1][7] = 4;
        condPaths[1][3] = 2;
        condPaths[1][9] = 5;
        condPaths[2][8] = 5;
        condPaths[3][1] = 2;
        condPaths[3][9] = 6;
        condPaths[3][7] = 5;
        condPaths[4][6] = 5;
        condPaths[6][4] = 5;
        condPaths[7][1] = 4;
        condPaths[7][9] = 8;
        condPaths[7][3] = 5;
        condPaths[8][2] = 5;
        condPaths[9][7] = 8;
        condPaths[9][3] = 6;
        condPaths[9][1] = 5;
        return condPaths;
    }
https://leetcode.com/discuss/104311/java-easy-understand-dfs-solution-72ms
If we use the symmetry, we can only start from 1, 2 and 5 then multiply the results of 1 and 2 by 4. (170ms)

http://www.cnblogs.com/grandyang/p/5541012.html
我们建立一个二维数组jumps,用来记录两个数字键之间是否有中间键,然后再用一个一位数组visited来记录某个键是否被访问过,然后我们用递归来解,我们先对1调用递归函数,在递归函数中,我们遍历1到9每个数字next,然后找他们之间是否有jump数字,如果next没被访问过,并且jump为0,或者jump被访问过,我们对next调用递归函数。数字1的模式个数算出来后,由于1,3,7,9是对称的,所以我们乘4即可,然后再对数字2调用递归函数,2,4,6,9也是对称的,再乘4,最后单独对5调用一次,然后把所有的加起来就是最终结果了
    int numberOfPatterns(int m, int n) {
        int res = 0;
        vector<bool> visited(10, false);
        vector<vector<int>> jumps(10, vector<int>(10, 0));
        jumps[1][3] = jumps[3][1] = 2;
        jumps[4][6] = jumps[6][4] = 5;
        jumps[7][9] = jumps[9][7] = 8;
        jumps[1][7] = jumps[7][1] = 4;
        jumps[2][8] = jumps[8][2] = 5;
        jumps[3][9] = jumps[9][3] = 6;
        jumps[1][9] = jumps[9][1] = jumps[3][7] = jumps[7][3] = 5;
        res += helper(1, 1, 0, m, n, jumps, visited) * 4;
        res += helper(2, 1, 0, m, n, jumps, visited) * 4;
        res += helper(5, 1, 0, m, n, jumps, visited);
        return res;
    }
    int helper(int num, int len, int res, int m, int n, vector<vector<int>> &jumps, vector<bool> &visited) {
        if (len >= m) ++res;
        ++len;
        if (len > n) return res;
        visited[num] = true;
        for (int next = 1; next <= 9; ++next) {
            int jump = jumps[num][next];
            if (!visited[next] && (jump == 0 || visited[jump])) {
                res = helper(next, len, res, m, n, jumps, visited);
            }
        }
        visited[num] = false;
        return res;
    }

X.
https://leetcode.com/discuss/104320/short-c-solution
其中used是一个9位的mask,每位对应一个数字,如果为1表示存在,0表示不存在,(i1, j1)是之前的位置,(i, j)是当前的位置,所以滑动是从(i1, j1)到(i, j),中间点为((i1+i)/2, (j1+j)/2), 这里的I和J分别为i1+i和j1+j,还没有除以2,所以I和J都是整数。如果I%2或者J%2不为0,说明中间点的坐标不是整数,即中间点不存在,如果中间点存在,如果中间点被使用了,则这条线也是成立的,可以调用递归

used is the 9-bit bitmask telling which keys have already been used and (i1,j1) and (i2,j2)are the previous two key coordinates. A step is valid if...
  • I % 2: It goes to a neighbor row or
  • J % 2: It goes to a neighbor column or
  • used2 & (1 << (I/2*3 + J/2))): The key in the middle of the step has already been used.
(i2,j2) are the coordinates of the previous key, (i,j) are the coordinates of the new key. So the new line goes from (i2,j2) to (i,j). The middle point of the line is at ((i2+i)/2, (j2+j)/2). My Iand J are those middle coordinates, except I didn't divide by 2 yet, so I can stay in integers.
Now if I % 2 isn't zero, then that means I/2 and thus (i2+i)/2 is no integer. Which means the middle point of the line is not a key. Same with the other coordinate. If both those checks fail, then the middle point of the new line is a key, and thus I need to check that that key has been used already.
int numberOfPatterns(int m, int n) { return count(m, n, 0, 1, 1, 1, 1); } private: int count(int m, int n, int used, int i1, int j1, int i2, int j2) { int number = m <= 0; if (!n) return 1; for (int i=0; i<3; i++) { for (int j=0; j<3; j++) { int I = i2 + i, J = j2 + j, used2 = used | (1 << (i*3 + j)); if (used2 > used && (I % 2 || J % 2 || used2 & (1 << (I/2*3 + J/2)))) number += count(m-1, n-1, used2, i2, j2, i, j); } } return number; }
http://www.geeksforgeeks.org/number-of-ways-to-make-mobile-lock-pattern/



No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) LeetCode Hard (39) Recursive Algorithm (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) Post-Order Traverse (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) Binary Indexed Trees (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts