Count pairs in an array that hold i*arr[i] > j*arr[j] - GeeksforGeeks
Given an array of integers arr[0..n-1], count all pairs (arr[i], arr[j]) in the such that i*arr[i] > j*arr[j], 0 =< i < j < n.
An efficient solution of this problem takes O(n log n) time. The idea is based on an interesting fact about this problem that after modifying the array such that every element is multiplied with its index, this problem convert into Count Inversions in an array.
Read full article from Count pairs in an array that hold i*arr[i] > j*arr[j] - GeeksforGeeks
Given an array of integers arr[0..n-1], count all pairs (arr[i], arr[j]) in the such that i*arr[i] > j*arr[j], 0 =< i < j < n.
An efficient solution of this problem takes O(n log n) time. The idea is based on an interesting fact about this problem that after modifying the array such that every element is multiplied with its index, this problem convert into Count Inversions in an array.
int merge(int arr[], int temp[], int left, int mid, int right){ int inv_count = 0; int i = left; /* index for left subarray*/ int j = mid; /* index for right subarray*/ int k = left; /* ndex for resultant subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else { temp[k++] = arr[j++]; inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp*/ while (i <= mid - 1) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /* Copy back the merged elements to original array*/ for (i=left; i <= right; i++) arr[i] = temp[i]; return inv_count;}/* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */int _mergeSort(int arr[], int temp[], int left, int right){ int mid, inv_count = 0; if (right > left) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (right + left)/2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid+1, right); /*Merge the two parts*/ inv_count += merge(arr, temp, left, mid+1, right); } return inv_count;}/* This function sorts the input array and returns the number of inversions in the array */int countPairs(int arr[], int n){ // Modify the array so that problem reduces to // count inversion problem. for (int i=0; i<n; i++) arr[i] = i*arr[i]; // Count inversions using same logic as // below post int temp[n]; return _mergeSort(arr, temp, 0, n - 1);}
Time Complexity: O(n2)
int CountPair(int arr[] , int n ){ int result = 0; // Initialize result for (int i=0; i<n; i++) { // Generate all pair and increment // counter if the hold given condition for (int j = i + 1; j < n; j++) if (i*arr[i] > j*arr[j] ) result ++; } return result;}