Minimum swaps to make two arrays identical - GeeksforGeeks
Given two arrays which have same values but in different order, we need to make second array same as first array using minimum number of swaps.
This problem can be solved by modifying the array B. We save the index of array A elements in array B i.e. if ith element of array A is at jth position in array B, then we will make arrB[i] = j
For above given example, modified array B will be, arrB = {3, 1, 0, 2}. This modified array represents distribution of array A element in array B and our goal is to sort this modified array in minimum number of swaps because after sorting only array B element will be aligned with array A elements.
Now count of minimum swaps for sorting an array can be found by visualizing the problem as a graph, this problem is already explained in previous article.
So we count these swaps in modified array and that will be our final answer.
http://www.geeksforgeeks.org/minimum-number-swaps-required-sort-array/
Read full article from Minimum swaps to make two arrays identical - GeeksforGeeks
Given two arrays which have same values but in different order, we need to make second array same as first array using minimum number of swaps.
This problem can be solved by modifying the array B. We save the index of array A elements in array B i.e. if ith element of array A is at jth position in array B, then we will make arrB[i] = j
For above given example, modified array B will be, arrB = {3, 1, 0, 2}. This modified array represents distribution of array A element in array B and our goal is to sort this modified array in minimum number of swaps because after sorting only array B element will be aligned with array A elements.
Now count of minimum swaps for sorting an array can be found by visualizing the problem as a graph, this problem is already explained in previous article.
So we count these swaps in modified array and that will be our final answer.
int
minSwapsToSort(
int
arr[],
int
n)
{
// Create an array of pairs where first
// element is array element and second element
// is position of first element
pair<
int
,
int
> arrPos[n];
for
(
int
i = 0; i < n; i++)
{
arrPos[i].first = arr[i];
arrPos[i].second = i;
}
// Sort the array by array element values to
// get right position of every element as second
// element of pair.
sort(arrPos, arrPos + n);
// To keep track of visited elements. Initialize
// all elements as not visited or false.
vector<
bool
> vis(n,
false
);
// Initialize result
int
ans = 0;
// Traverse array elements
for
(
int
i = 0; i < n; i++)
{
// already swapped and corrected or
// already present at correct pos
if
(vis[i] || arrPos[i].second == i)
continue
;
// find out the number of node in
// this cycle and add in ans
int
cycle_size = 0;
int
j = i;
while
(!vis[j])
{
vis[j] = 1;
// move to next node
j = arrPos[j].second;
cycle_size++;
}
// Update answer by adding current cycle.
ans += (cycle_size - 1);
}
// Return result
return
ans;
}
// method returns minimum number of swap to make
// array B same as array A
int
minSwapToMakeArraySame(
int
a[],
int
b[],
int
n)
{
// map to store position of elements in array B
// we basically store element to index mapping.
map<
int
,
int
> mp;
for
(
int
i = 0; i < n; i++)
mp[b[i]] = i;
// now we're storing position of array A elements
// in array B.
for
(
int
i = 0; i < n; i++)
b[i] = mp[a[i]];
/* We can uncomment this section to print modified
b array
for (int i = 0; i < N; i++)
cout << b[i] << " ";
cout << endl; */
// returing minimum swap for sorting in modified
// array B as final answer
return
minSwapsToSort(b, n);
}
public
static
int
minSwaps(
int
[] arr)
{
int
n = arr.length;
// Create two arrays and use as pairs where first
// array is element and second array
// is position of first element
ArrayList <Pair <Integer, Integer> > arrpos =
new
ArrayList <Pair <Integer, Integer> > ();
for
(
int
i =
0
; i < n; i++)
arrpos.add(
new
Pair <Integer, Integer> (arr[i], i));
// Sort the array by array element values to
// get right position of every element as the
// elements of second array.
arrpos.sort(
new
Comparator<Pair<Integer, Integer>>()
{
@Override
public
int
compare(Pair<Integer, Integer> o1,
Pair<Integer, Integer> o2)
{
if
(o1.getValue() > o2.getValue())
return
-
1
;
// We can change this to make it then look at the
// words alphabetical order
else
if
(o1.getValue().equals(o2.getValue()))
return
0
;
else
return
1
;
}
});
// To keep track of visited elements. Initialize
// all elements as not visited or false.
Boolean[] vis =
new
Boolean[n];
Arrays.fill(vis,
false
);
// Initialize result
int
ans =
0
;
// Traverse array elements
for
(
int
i =
0
; i < n; i++)
{
// already swapped and corrected or
// already present at correct pos
if
(vis[i] || arrpos.get(i).getValue() == i)
continue
;
// find out the number of node in
// this cycle and add in ans
int
cycle_size =
0
;
int
j = i;
while
(!vis[j])
{
vis[j] =
true
;
// move to next node
j = arrpos.get(j).getValue();
cycle_size++;
}
// Update answer by adding current cycle.
ans += (cycle_size -
1
);
}
// Return result
return
ans;
}