Sunday, October 23, 2016

LeetCode 437 - Path Sum III


Related: LeetCode - Path Sum II
https://leetcode.com/problems/path-sum-iii/
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:

1.  5 -> 3
2.  5 -> 2 -> 1
3. -3 -> 11
https://discuss.leetcode.com/topic/64388/simple-ac-java-solution-dfs
A better solution is suggested in 17ms O(n) java prefix sum by tankztc. It use a hash map to store all the prefix sum and each time check if the any subarray sum to the target, add with some comments:
https://discuss.leetcode.com/topic/64526/17-ms-o-n-java-prefix-sum-method
So the idea is similar as Two sum, using HashMap to store ( key : the prefix sum, value : how many ways get to this prefix sum) , and whenever reach a node, we check if prefix sum - target exists in hashmap or not, if it does, we added up the ways of prefix sum - target into res.
For instance : in one path we have 1,2,-1,-1,2, then the prefix sum will be: 1, 3, 2, 1, 3, let's say we want to find target sum is 2, then we will have {2}, {1, 2, -1, -1, 2}, { 2, -1, -1, 2} ways.
I used global variable count, but obviously we can avoid global variable by passing the count from bottom up. The time complexity is O(n).

why do you minus one in the last line of code?
preSum.put(sum, preSum.get(sum) - 1);
I think for a node, once you processed all of its child nodes, the number of ways to get to current prefix sum should not effect the rest of nodes, in case they have the same prefix sum.
    public int pathSum(TreeNode root, int sum) {
        Map<Integer, Integer> map = new HashMap<>();
        map.put(0, 1);  //Default sum = 0 has one count
        return backtrack(root, 0, sum, map); 
    }
    //BackTrack one pass
    public int backtrack(TreeNode root, int sum, int target, Map<Integer, Integer> map){
        if(root == null)
            return 0;
        sum += root.val;
        int res = map.getOrDefault(sum - target, 0);    //See if there is a subarray sum equals to target
        map.put(sum, map.getOrDefault(sum, 0)+1);
        //Extend to left and right child
        res += backtrack(root.left, sum, target, map) + backtrack(root.right, sum, target, map);
        map.put(sum, map.get(sum)-1); //\\Remove the current node so it wont affect other path
        return res;
    }

X. http://www.cnblogs.com/grandyang/p/6007336.html
让我们求二叉树的路径的和等于一个给定值,说明了这条路径不必要从根节点开始,可以是中间的任意一段,而且二叉树的节点值也是有正有负。那么我们可以用递归来做,相当于先序遍历二叉树,对于每一个节点都有记录了一条从根节点到当前节点到路径,同时用一个变量curSum记录路径节点总和,然后我们看curSum和sum是否相等,相等的话结果res加1,不等的话我们来继续查看子路径和有没有满足题意的,做法就是每次去掉一个节点,看路径和是否等于给定值,注意最后必须留一个节点,不能全去掉了,因为如果全去掉了,路径之和为0,而如果假如给定值刚好为0的话就会有问题
https://discuss.leetcode.com/topic/64450/dfs-java-solution
public int pathSum(TreeNode root, int sum) {
 return pathSumRec(root, sum, new ArrayList<Integer>()); 
}
 
public int pathSumRec(TreeNode node, int k, List<Integer> pathSums) {
 if(node==null) return 0;
 List<Integer> pathSumsLeft = new ArrayList<>();
 int pathsInLeft = pathSumRec(node.left, k, pathSumsLeft);
 List<Integer> pathSumsRight = new ArrayList<>();
 int pathsInRight = pathSumRec(node.right, k, pathSumsRight);
 
 int paths = 0;
 if(node.val==k) paths++;
 pathSums.add(node.val);
 
 for(int i: pathSumsLeft) {
  if(node.val+i==k) {
   paths++;
  }
  pathSums.add(node.val+i);
 }

 for(int i: pathSumsRight) {
  if(node.val+i==k) {
   paths++;
  }
  pathSums.add(node.val+i);
 }
 return paths+pathsInLeft+pathsInRight;
}


https://discuss.leetcode.com/topic/64415/easy-to-understand-java-solution-with-comment
I totally had the same idea with yours. But the my output was always greater than the expected answer. Now I understand that some child nodes have started several times. 
for each parent node in the tree, we have 2 choices:
1. include it in the path to reach sum.
2. not include it in the path to reach sum. 

for each child node in the tree, we have 2 choices:
1. take what your parent left you.
2. start from yourself to form the path.

one little thing to be careful:
every node in the tree can only try to be the start point once.

for example, When we try to start with node 1, node 3, as a child, could choose to start by itself.
             Later when we try to start with 2, node 3, still as a child, 
             could choose to start by itself again, but we don't want to add the count to result again.
     1
      \
       2
        \
         3
public class Solution {
    int target;
    Set<TreeNode> visited;
    public int pathSum(TreeNode root, int sum) {
        target = sum;
        visited = new HashSet<TreeNode>();  // to store the nodes that have already tried to start path by themselves.
        return pathSumHelper(root, sum, false);
    }
    
    public int pathSumHelper(TreeNode root, int sum, boolean hasParent) {
        if(root == null) return 0;
        //the hasParent flag is used to handle the case when parent path sum is 0.
        //in this case we still want to explore the current node.
        if(sum == target && visited.contains(root) && !hasParent) return 0;
        if(sum == target && !hasParent) visited.add(root);
        int count = (root.val == sum)?1:0;
        count += pathSumHelper(root.left, sum - root.val, true);
        count += pathSumHelper(root.right, sum - root.val, true);
        count += pathSumHelper(root.left, target , false);
        count += pathSumHelper(root.right, target, false);
        return count;
    }
}
http://bookshadow.com/weblog/2016/10/23/leetcode-path-sum-iii/
树的遍历,在遍历节点的同时,以经过的节点为根,寻找子树中和为sum的路径。
def pathSum(self, root, sum): """ :type root: TreeNode :type sum: int :rtype: int """ def traverse(root, val): if not root: return 0 res = (val == root.val) res += traverse(root.left, val - root.val) res += traverse(root.right, val - root.val) return res if not root: return 0 ans = traverse(root, sum) ans += self.pathSum(root.left, sum) ans += self.pathSum(root.right, sum) return ans
http://blog.csdn.net/tc_to_top/article/details/52902003
题目分析:因为只能向下,因此直接DFS即可,用个flag标记当前点是否可作为某次的起点
  1.     void DFS(TreeNode root, boolean flag, int cur, int sum, int[] ans) {  
  2.         cur += root.val;  
  3.         if (cur == sum) {  
  4.             ans[0] ++;  
  5.         }  
  6.         if (root.left != null) {  
  7.             DFS(root.left, false, cur, sum, ans);  
  8.             if (flag) {  
  9.                 DFS(root.left, true0, sum, ans);  
  10.             }  
  11.         }  
  12.         if (root.right != null) {  
  13.             DFS(root.right, false, cur, sum, ans);  
  14.             if (flag) {  
  15.                 DFS(root.right, true0, sum, ans);  
  16.             }  
  17.         }  
  18.     }  
  19.       
  20.     public int pathSum(TreeNode root, int sum) {  
  21.         if (root == null) {  
  22.             return 0;  
  23.         }  
  24.         int[] ans = new int[1];  
  25.         DFS(root, true0, sum, ans);  
  26.         return ans[0];  
  27.     }  

X.
https://discuss.leetcode.com/topic/64388/simple-ac-java-solution-dfs
https://discuss.leetcode.com/topic/64461/simplest-java-dfs-32ms
https://discuss.leetcode.com/topic/64461/simple-java-dfs
Space: O(n) due to recursion.
Time: O(n^2) in worst case (no branching); O(nlogn) in best case (balanced tree).

Each time find all the path start from current node
Then move start node to the child and repeat.
If the tree is balanced, then each node is reached from its ancestors (+ itself) only, which are up to log n. Thus, the time complexity for a balanced tree is O (n * log n).
However, in the worst-case scenario where the binary tree has the same structure as a linked list, the time complexity is indeed O (n ^ 2).
    public int pathSum(TreeNode root, int sum) {
        if(root == null)
            return 0;
        return findPath(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
    }
    
    public int findPath(TreeNode root, int sum){
        int res = 0;
        if(root == null)
            return res;
        if(sum == root.val)
            res++;
        res += findPath(root.left, sum - root.val);
        res += findPath(root.right, sum - root.val);
        return res;
    }



No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) LeetCode Hard (39) Recursive Algorithm (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) Post-Order Traverse (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) Binary Indexed Trees (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts