Tuesday, January 19, 2016

LeetCode 329. Longest Increasing Path in a Matrix


https://leetcode.com/problems/longest-increasing-path-in-a-matrix/
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9].
Example 2:
nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
http://algobox.org/longest-increasing-path-in-a-matrix/
https://discuss.leetcode.com/topic/34835/15ms-concise-java-solution
https://discuss.leetcode.com/topic/34755/java-dfs-dp-solution
The naive idea is that, start from any cell and do DFS to find the longest increasing path with that cell as the first. This solution is O(n^2m^2) for a matrix of n by m.
Of course, this is too slow and contains a lot of repeated calculations. An optimization is using memoization. Suppose a cell (i, j) has value v(i, j) and the longest increasing path start from (i, j) is l(i,j). Then we have
Here neighbors(i,j) is just a function to generate all four (if possible) neighbor indices for (i, j)
Now we could do a scan through the matrix and apply this formula/subroutine for all cells. During the scan, recursive calls will happen. But that is ok because we can use a memoization matrix to make sure no repeat calculation. The time complexity of the entire algorithm is O(nm) which is linear to the number of cells.
    private static final int[] d = {0, 1, 0, -1, 0};
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix.length == 0) return 0;
        int m = matrix.length, n = matrix[0].length;
        int[][] memo = new int[m][n];
        int ans = 0;
        for (int i = 0; i < m; ++i)
            for (int j = 0; j < n; ++j)
                ans = Math.max(ans, dfs(matrix, m, n, i, j, memo));
        return ans;
    }
    private int dfs(int[][] matrix, int m, int n, int i, int j, int[][] memo) {
        if (memo[i][j] == 0) {
            for (int k = 0; k < 4; ++k) {
                int p = i + d[k], q = j + d[k + 1];
                if (0 <= p && p < m && 0 <= q && q < n && matrix[p][q] > matrix[i][j])
                    memo[i][j] = Math.max(memo[i][j], dfs(matrix, m, n, p, q, memo));
            }
            memo[i][j]++;
        }
        return memo[i][j];
    }
DFS+DP - time complexity: O(mn)
http://www.cnblogs.com/grandyang/p/5148030.html
https://www.hrwhisper.me/leetcode-longest-increasing-path-matrix/
http://www.fgdsb.com/2015/01/07/longest-increasing-sequence-in-matrix/

直接DFS效率太低,这题主要考DP+记忆化。
DP方程很明显:
opt[i][j] = max{ opt[i+1][j], opt[i-1][j], opt[i][j+1], opt[i][j-1] } +1
这道题给我们一个二维数组,让我们求矩阵中最长的递增路径,规定我们只能上下左右行走,不能走斜线或者是超过了边界。那么这道题的解法要用递归和DP来解,用DP的原因是为了提高效率,避免重复运算。我们需要维护一个二维动态数组dp,其中dp[i][j]表示数组中以(i,j)为起点的最长递增路径的长度,初始将dp数组都赋为0,当我们用递归调用时,遇到某个位置(x, y), 如果dp[x][y]不为0的话,我们直接返回dp[x][y]即可,不需要重复计算。我们需要以数组中每个位置都为起点调用递归来做,比较找出最大值。在以一个位置为起点用DFS搜索时,对其四个相邻位置进行判断,如果相邻位置的值大于上一个位置,则对相邻位置继续调用递归,并更新一个最大值,搜素完成后返回即可,参见代码如下:
    int []dx = { 1 , -1, 0 , 0  };
    int []dy = { 0 , 0 , 1 , -1 };
    public int longestIncreasingPath(int[][] matrix) {
        if (matrix.length == 0) return 0;
        int m = matrix.length, n = matrix[0].length;
        int[][] dis = new int [m][n]; // call it dp or cache
        int ans = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                ans = Math.max(ans, dfs( i, j, m, n, matrix, dis));
            }
        }
        return ans;
    }
    int dfs(int x, int y, int m,int n,int[][] matrix, int[][] dis) {
        if (dis[x][y] != 0) return dis[x][y];
        for (int i = 0; i < 4; i++) {
            int nx = x + dx[i];
            int ny = y + dy[i];
            if (nx >= 0 && ny >= 0 && nx < m && ny < n && matrix[nx][ny] > matrix[x][y]) {
                dis[x][y] = Math.max(dis[x][y], dfs(nx, ny, m, n, matrix, dis));
            }
        }
        dis[x][y]++;
        return dis[x][y];
    }

https://asanchina.wordpress.com/2016/01/20/329-longest-increasing-path-in-a-matrix/
这是一道典型的动态规划,得使用memorandum(备忘录)。我的dfs(r, c)会求以matrix[r][c]为最后一个数字的序列的最大长度。
class Solution {
    vector<vector<int> > dp;
    vector<vector<int> > matrix;
    int row, col;
public:
    int longestIncreasingPath(vector<vector<int> >& matrix) {
        row = matrix.size();
        if(row == 0) return 0;
        col = matrix[0].size();
        if(col == 0) return 0;
        
        dp = vector<vector<int> >(row, vector(col, -1));
        this->matrix = matrix;
        
        int maxi = 0;
        for(int r = 0; r < row; ++r)
            for(int c = 0; c < col; ++c) if(dfs(r, c) > maxi)
                    maxi = dfs(r, c);
        return maxi;
    }
private:
    int dfs(int r, int c)
    {
        if(dp[r][c] != -1) return dp[r][c];
        int dir[][2] = {{-1, 0},{1,0},{0,-1},{0,1}};
        int cur = 1;
        for(int d = 0; d < 4; ++d) 
        { 
            int tmpr = r+dir[d][0]; 
            int tmpc = c+dir[d][1]; 
            if(tmpr >= 0 && tmpr < row && tmpc >= 0 && tmpc < col && matrix[r][c] > matrix[tmpr][tmpc])
                cur = max(cur, dfs(tmpr, tmpc)+1);
        }
        dp[r][c] = cur;
        return cur;
    }
};
http://www.zrzahid.com/longest-increasing-path-in-a-matrix/

http://bookshadow.com/weblog/2016/01/20/leetcode-longest-increasing-path-matrix/
将矩阵matrix按照值从小到大排序,得到列表slist,列表元素(x, y, val)存储原矩阵的(行、列、值)
引入辅助数组dp,dp[x][y]表示从矩阵(x, y)元素出发的最长递增路径长度
遍历slist,同时更新(x, y)左、右、上、下四个相邻元素的dp值
def longestIncreasingPath(self, matrix): """ :type matrix: List[List[int]] :rtype: int """ h = len(matrix) if h == 0: return 0 w = len(matrix[0]) dp = [[1] * w for x in range(h)] slist = sorted([(i, j, val) for i, row in enumerate(matrix) for j, val in enumerate(row)], key=operator.itemgetter(2)) for x, y, val in slist: for dx, dy in zip([1, 0, -1, 0], [0, 1, 0, -1]): nx, ny = x + dx, y + dy if 0 <= nx < h and 0 <= ny < w and matrix[nx][ny] > matrix[x][y]: dp[nx][ny] = max(dp[nx][ny], dp[x][y] + 1) return max([max(x) for x in dp])
参考:https://leetcode.com/discuss/81319/short-python
代码作者使用复数表示矩阵的行、列,十分巧妙。
def longestIncreasingPath(self, matrix): matrix = {i + j*1j: val for i, row in enumerate(matrix) for j, val in enumerate(row)} length = {} for z in sorted(matrix, key=matrix.get): length[z] = 1 + max([length[Z] for Z in z+1, z-1, z+1j, z-1j if Z in matrix and matrix[z] > matrix[Z]] or [0]) return max(length.values() or [0])



No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (985) Algorithm (795) Review (759) to-do (631) LeetCode - Review (506) Classic Algorithm (324) Dynamic Programming (292) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Search (81) Binary Tree (80) Graph Algorithm (74) Greedy Algorithm (72) DFS (66) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) Codility (54) BFS (53) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Recursive Algorithm (39) LeetCode Hard (38) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Hash (22) Post-Order Traverse (22) Binary Indexed Trees (21) Bisection Method (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) Follow Up (19) O(N) (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Find Rule (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Tree Without Tree Predefined (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts