Showing posts with label Consistent Hash. Show all posts
Showing posts with label Consistent Hash. Show all posts

[LintCode][System Design] Consistent Hashing - 简书


[LintCode][System Design] Consistent Hashing - 简书
一般的数据库进行horizontal shard的方法是指,把 id 对 数据库服务器总数 n 取模,然后来得到他在哪台机器上。这种方法的缺点是,当数据继续增加,我们需要增加数据库服务器,将 n 变为 n+1 时,几乎所有的数据都要移动,这就造成了不 consistent。为了减少这种 naive 的 hash方法(%n) 带来的缺陷,出现了一种新的hash算法:一致性哈希的算法――Consistent Hashing。这种算法有很多种实现方式,这里我们来实现一种简单的 Consistent Hashing。
  1. 将 id 对 360 取模,假如一开始有3台机器,那么让3台机器分别负责0~119, 120~239, 240~359 的三个部分。那么模出来是多少,查一下在哪个区间,就去哪台机器。
  2. 当机器从 n 台变为 n+1 台了以后,我们从n个区间中,找到最大的一个区间,然后一分为二,把一半给第n+1台机器。
  3. 比如从3台变4台的时候,我们找到了第3个区间0~119是当前最大的一个区间,那么我们把0~119分为0~59和60~119两个部分。0~59仍然给第1台机器,60~119给第4台机器。
  4. 然后接着从4台变5台,我们找到最大的区间是第3个区间120~239,一分为二之后,变为 120~179, 180~239。
假设一开始所有的数据都在一台机器上,请问加到第 n 台机器的时候,区间的分布情况和对应的机器编号分别是多少?

Clarification
If the maximal interval is [x, y], and it belongs to machine id z, when you add a new machine with id n, you should divide [x, y, z] into two intervals:[x, (x + y) / 2, z] and [(x + y) / 2 + 1, y, n]
for n = 1, return
[
  [0,359,1]
]
represent 0~359 belongs to machine 1.
for n = 2, return
[
  [0,179,1],
  [180,359,2]
]
for n = 3, return
[
  [0,89,1]
  [90,179,3],
  [180,359,2]
]
for n = 4, return
[
  [0,89,1],
  [90,179,3],
  [180,269,2],
  [270,359,4]
]
for n = 5, return
[
  [0,44,1],
  [45,89,1],
  [90,179,3],
  [180,269,2],
  [270,359,4]
]
模拟的方法,每次选取最大的range,然后插入新的range。

    vector<vector<int>> consistentHashing(int n) {
        // Write your code here
        vector<vector<int>> ret;
        vector<int> range;
        range.push_back(0);
        range.push_back(359);
        range.push_back(1);
        ret.push_back(range);

        for(int i = 2; i <= n; i++) {
            int maxRange = INT_MIN;
            int index = -1;
            for(int j = 0; j < ret.size(); j++) {
                if (maxRange < ret[j][1] - ret[j][0]) {
                    maxRange = ret[j][1] - ret[j][0];
                    index = j;
                }
            }

            int mid = (ret[index][1] + ret[index][0]) / 2;
            int end = ret[index][1];
            ret[index][1] = mid;
            range[0] = mid + 1;
            range[1] = end;
            range[2] = i;
            ret.push_back(range);
        }

        return ret;
    }
Read full article from [LintCode][System Design] Consistent Hashing - 简书

[LintCode][System Design] Consistent Hashing II - 简书


[LintCode][System Design] Consistent Hashing II - 简书
在 Consistent Hashing I 中我们介绍了一个比较简单的一致性哈希算法,这个简单的版本有两个缺陷:
  1. 增加一台机器之后,数据全部从其中一台机器过来,这一台机器的读负载过大,对正常的服务会造成影响。
  2. 当增加到3台机器的时候,每台服务器的负载量不均衡,为1:1:2。
为了解决这个问题,引入了 micro-shards 的概念,一个更好的算法是这样:
  1. 将 360° 的区间分得更细。从 0~359 变为一个 0 ~ n-1 的区间,将这个区间首尾相接,连成一个圆。
  2. 当加入一台新的机器的时候,随机选择在圆周中撒 k 个点,代表这台机器的 k 个 micro-shards。
  3. 每个数据在圆周上也对应一个点,这个点通过一个 hash function 来计算。
  4. 一个数据该属于那台机器负责管理,是按照该数据对应的圆周上的点在圆上顺时针碰到的第一个 micro-shard 点所属的机器来决定。
n 和 k在真实的 NoSQL 数据库中一般是 2^64 和 1000。
请实现这种引入了 micro-shard 的 consistent hashing 的方法。主要实现如下的三个函数:
  1. create(int n, int k)
  2. addMachine(int machine_id) // add a new machine, return a list of shard ids.
  3. getMachineIdByHashCode(int hashcode) // return machine id

当 n 为 2^64 时,在这个区间内随机基本不会出现重复。

当 n 为 2^64 时,在这个区间内随机基本不会出现重复。
但是为了方便测试您程序的正确性,n 在数据中可能会比较小,所以你必须保证你生成的 k 个随机数不会出现重复。

当 n 为 2^64 时,在这个区间内随机基本不会出现重复。
但是为了方便测试您程序的正确性,n 在数据中可能会比较小,所以你必须保证你生成的 k 个随机数不会出现重复。
LintCode并不会判断你addMachine的返回结果的正确性(因为是随机数),只会根据您返回的addMachine的结果判断你getMachineIdByHashCode结果的正确性。
Example
create(100, 3)
addMachine(1)
>> [3, 41, 90]  => 三个随机数
getMachineIdByHashCode(4)
>> 1
addMachine(2)
>> [11, 55, 83]
getMachineIdByHashCode(61)
>> 2
getMachineIdByHashCode(91)
>> 1
文/chk(简书作者)
原文链接:http://www.jianshu.com/p/4b39053a7a24
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。

class Solution {
private:
static int shardNum;
static int microShardNum;
static vector<int> shard2mach;
public:
// @param n a positive integer
// @param k a positive integer
// @return a Solution object
static Solution create(int n, int k) {
    shardNum = n;
    microShardNum = k;
    shard2mach.resize(n);
    for(int i = 0; i < n; i++) {
        shard2mach[i] = -1;
    }
}

// @param machine_id an integer
// @return a list of shard ids
vector<int> addMachine(int machine_id) {
    srand(time(NULL));
    int count = 0;
    vector<int> ret;
    while(count < microShardNum) {
        int number = rand() % shardNum;
        if (shard2mach[number] == -1) {
            count++;
            shard2mach[number] = machine_id;
            ret.push_back(number);
        }
    }

    return ret;
}

// @param hashcode an integer
// @return a machine id
int getMachineIdByHashCode(int hashcode) {
    int i = hashcode;
    while(true) {
        if (i == shardNum) {
            i = 0;
        }

        if (shard2mach[i] != -1) {
            return shard2mach[i];
        }
        i++;
    }
}
};

int Solution::shardNum;

int Solution::microShardNum;

vector<int> Solution::shard2mach;
Read full article from [LintCode][System Design] Consistent Hashing II - 简书

Consistent Hash Ring


Consistent Hash Ring
Consistent Hashing
In consistent hashing, the servers, as well as the keys, are hashed, and it is by this hash that they are looked up. The hash space is large, and is treated as if it wraps around to form a circle - hence hash ring. The process of creating a hash for each server is equivalent to placing it at a point on the circumference of this circle. When a key needs to be looked up, it is hashed, which again corresponds to a point on the circle. In order to find its server, one then simply moves round the circle clockwise from this point until the next server is found. If no server is found from that point to end of the hash space, the first server is used - this is the "wrapping round" that makes the hash space circular.
The only remaining problem is that in practice hashing algorithms are likely to result in clusters of servers on the ring (or, to be more precise, some servers with a disproportionately large space before them), and this will result in greater load on the first server in the cluster and less on the remainder. This can be ameliorated by adding each server to the ring a number of times in different places. This is achieved by having a replica count, which applies to all servers in the ring, and when adding a server, looping from 0 to the count - 1, and hashing a string made from both the server and the loop variable to produce the position. This has the effect of distributing the servers more evenly over the ring. Note that this has nothing to do with server replication; each of the replicas represents the same physical server, and replication of data between servers is an entirely unrelated issue.
Consistent Hashing
It is interesting to note that it is only the client that needs to implement the consistent hashing algorithm - the memcached server is unchanged. Other systems that employ consistent hashing include Chord, which is a distributed hash table implementation
public class ConsistentHash<T> {

 private final HashFunction hashFunction;
 private final int numberOfReplicas;
 private final SortedMap<Integer, T> circle = new TreeMap<Integer, T>();

 public ConsistentHash(HashFunction hashFunction, int numberOfReplicas,
     Collection<T> nodes) {
   this.hashFunction = hashFunction;
   this.numberOfReplicas = numberOfReplicas;

   for (T node : nodes) {
     add(node);
   }
 }

 public void add(T node) {
   for (int i = 0; i < numberOfReplicas; i++) {
     circle.put(hashFunction.hash(node.toString() + i), node);
   }
 }

 public void remove(T node) {
   for (int i = 0; i < numberOfReplicas; i++) {
     circle.remove(hashFunction.hash(node.toString() + i));
   }
 }

 public T get(Object key) {
   if (circle.isEmpty()) {
     return null;
   }
   int hash = hashFunction.hash(key);
   if (!circle.containsKey(hash)) {
     SortedMap<Integer, T> tailMap = circle.tailMap(hash);
     hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
   }
   return circle.get(hash);
 }

}
The circle is represented as a sorted map of integers, which represent the hash values, to caches (of type T here).
When a ConsistentHash object is created each node is added to the circle map a number of times (controlled by numberOfReplicas). The location of each replica is chosen by hashing the node's name along with a numerical suffix, and the node is stored at each of these points in the map.

To find a node for an object (the get method), the hash value of the object is used to look in the map. Most of the time there will not be a node stored at this hash value (since the hash value space is typically much larger than the number of nodes, even with replicas), so the next node is found by looking for the first key in the tail map. If the tail map is empty then we wrap around the circle by getting the first key in the circle.

http://engineering.ticketbis.com/consistent-hashing-implementation/
Read full article from Consistent Hash Ring

一致性哈希算法原理设计 | 知致智之


一致性哈希算法原理设计 | 知致智之
针对ReHash的弊端,Karger提出了一种算法,算法的核心是"虚拟节点"
将所有的数据映射成一组大于服务器数量的虚拟节点,虚拟节点再映射到真实的服务器。所以当服务器宕机时,由于虚拟节点的数量固定不变,所有不需要ReHash,而只需要将服务不可用的虚拟节点重新迁移,这样只需要迁移宕机节点的数据。
经典的算法中,宕机服务器的下一个真实节点将提供服务。

Amazon的大数据存储平台"Dynamo"使用了一致性哈希,但它并没有使用经典算法,而是使用了故障节点ReHash的思路。
系统将所有的虚拟节点和真实服务器的对应关系保存到一个配置系统,当某些虚拟节点的服务不可用时,重新配置这些虚拟节点的服务到其他真实服务器,这样既不用大量迁移数据,也保证了所有服务器的负载相对均衡。
Read full article from 一致性哈希算法原理设计 | 知致智之

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts