LintCode 30- Dice Sum


http://www.lintcode.com/en/problem/dices-sum/
Throw n dices, the sum of the dices' faces is S. Given n, find the all possible value of S along with its probability.
 Notice
You do not care about the accuracy of the result, we will help you to output results.
Given n = 1, return [ [1, 0.17], [2, 0.17], [3, 0.17], [4, 0.17], [5, 0.17], [6, 0.17]].
二维数组dp[i][j]保存投掷i次得到和为j的概率,当前位置的概率为当前投掷1 ~ 6的情况下的前序概率和
  1.     public List<Map.Entry<Integer, Double>> dicesSum(int n) {  
  2.         List<Map.Entry<Integer, Double>> res = new LinkedList();  
  3.         double[][] dp = new double[n + 1][6 * n + 1];  
  4.         for (int i = 1; i <= 6; i++) {  
  5.             dp[1][i] = 1.0 / 6.0;  
  6.         }  
  7.         for (int i = 2; i <= n; i++) {  
  8.             for (int j = i; j <= 6 * i; j++) {  
  9.                 for (int k = 1; k <= 6; k++) {  
  10.                     if (j > k) {  
  11.                         dp[i][j] += dp[i - 1][j - k];  
  12.                     }  
  13.                 }  
  14.                 dp[i][j] /= 6.0;  
  15.             }  
  16.         }  
  17.         for (int i = n; i <= 6 * n; i++) {  
  18.             res.add(new AbstractMap.SimpleEntry<Integer, Double>(i, dp[n][i]));  
  19.         }  
  20.         return res;  
  21.     } 
https://zhengyang2015.gitbooks.io/lintcode/dices_sum_20.html
用dp解决。dp[i][j]表示i个骰子一共得到j点的概率。要得到dp[i][j]可以考虑若最后一个筛子的点数为k(1~6),则前i-1个筛子一共得到的点数为j-k(因为i-1个筛子至少得到i-1点,所以j-k >= i - 1 => k <= j - i + 1)。所以只要把最后一个筛子为k的各种情况加起来最后再除以6即可(每多一个筛子概率要多除以一个6)。
状态函数:
dp[i][j] = dp[i-1][j-k] (i <= j <= 6 * i, k >= 1 && k <= j - i + 1 && k <= 6)

    public List<Map.Entry<Integer, Double>> dicesSum(int n) {
        List<Map.Entry<Integer, Double>> result = new ArrayList<Map.Entry<Integer, Double>>();
        if(n < 1){
            return result;
        }
        //初始化n=1的情况
        double[][] matrix = new double[n + 1][6 * n + 1];
        for(int i = 1; i <= 6; i++){
            matrix[1][i] = 1.0/6;
        }

        for(int i = 2; i <= n; i++){
        //i个筛子至少得到i点,至多得到6 * i点
            for(int j = i; j <= 6 * i; j++){
            //k表示最后一个筛子能取的点数
                for(int k = 1; k <= 6; k++){
                    if(k <= j - i + 1){
                        matrix[i][j] += matrix[i - 1][j - k];
                    }
                }
                //相对i-1个筛子多了一个筛子,因此加和的每一项都要除以6
                matrix[i][j] /= 6.0;
            }
        }

        for(int i = n; i <= 6 * n; i++){
            result.add(new AbstractMap.SimpleEntry<Integer, Double>(i, matrix[n][i]));
        }

        return result;
    }

Buttercola: Indeed: Sum Dice Possibility
这个地里面经没看到过,写一个函数float sumPossibility(int dice, int target),就是投dice个骰子,求最后和为target的概率。因为总共的可能性是6^dice,所以其实就是combination sum,求dice个骰子有多少种组合,使其和为target。先用brute force的dfs来一个O(6^dice)指数复杂度的,然后要求优化,用dp,最后结束代码写的是两者结合的memorized search吧,面试官走的时候还说了句such a good solution。

    public static float sumPossibility(int n, int target) {
        if (n <= 0 || target <= 0) {
            return 0;
        }
       
        int total = (int) Math.pow(6, n);
       
        int[][] dp = new int[n + 1][target + 1];
        dp[0][0] = 1;
       
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= target; j++) {
                for (int k = 1; k <= 6; k++) {
                    if (j >= k) {
                        dp[i][j] += dp[i - 1][j - k];
                    }
                }
            }
        }
       
        return (float) dp[n][target] / total;
    }
Read full article from Buttercola: Indeed: Sum Dice Possibility

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts