LeetCode 531 - Lonely Pixel I


https://www.nowtoshare.com/en/Article/Index/20483
Given a picture consisting of black and white pixels, find the number of black lonely pixels.
The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.
A black lonely pixel is character 'B' that located at a specific position where the same row and same column don't have any other black pixels.
Example:
Input: 
[['W', 'W', 'B'],
 ['W', 'B', 'W'],
 ['B', 'W', 'W']]

Output: 3
Explanation: All the three 'B's are black lonely pixels.

Note:
  1. The range of width and height of the input 2D array is [1,500].
X.
O(nm) Time, O(1) Space Solution:
The hack here is to mutate the first row and first column of the given matrix to store the counts of items in the row/column.
W + 1 = X --> one item in the row/column
B + 1 = C --> one item in the row/column, and the first row is the black pixel
W + 2 = Y --> two items in the row/column
W - 1 = V --> this prevents wrap-around past W if there are more than 255 black pixels in a row/column
The same idea as "Design Tic-Tac-Toe".
public int findLonelyPixel(char[][] picture) {
    int n = picture.length, m = picture[0].length;
    
    int firstRowCount = 0;
    for (int i=0;i<n;i++) 
        for (int j=0;j<m;j++) 
            if (picture[i][j] == 'B') {   
                if (picture[0][j] < 'Y' && picture[0][j] != 'V') picture[0][j]++;
                if (i == 0) firstRowCount++;
                else if (picture[i][0] < 'Y' && picture[i][0] != 'V') picture[i][0]++;
            }

    int count = 0;
    for (int i=0;i<n;i++) 
        for (int j=0;j<m;j++) 
            if (picture[i][j] < 'W' && (picture[0][j] == 'C' || picture[0][j] == 'X')) { 
                if (i == 0) count += firstRowCount == 1 ? 1 : 0;
                else if (picture[i][0] == 'C' || picture[i][0] == 'X') count++;
            }
                
    return count;
}
X. One pass solution
https://blog.csdn.net/lcharon/article/details/60597972
扫描,对于B的点,行计数+1,列计数如果为0,就记录行数,如果大于0,就取负。
结果对列计数为正的进行统计,计算其中行计数为1的点即可(来自某个不愿透露姓名的展的教学)
    int findLonelyPixel(vector<vector<char>>& picture) {
        vector<int> row(picture.size(), 0), col(picture[0].size(), 0);
        int result = 0;
        for (int i = 0; i < picture.size(); ++i){
            for (int j = 0; j < picture[0].size(); ++j){
                if (picture[i][j] == 'B'){
                    ++row[i];
                    if (col[j] == 0){
                        col[j] = i + 1;
                    }
                    else{
                        col[j] = -1;
                    }
                }
            }
        }
        for (int i = 0; i < col.size(); ++i){
            if (col[i] > 0){
                if (row[col[i] - 1] == 1){
                    ++result;
                }
            }
        }

        return result;   
    }
https://www.godwinls.com/archives/119
public int findLonelyPixel(char[][] picture) {
    int m = picture.length, n = picture[0].length;
    int[] row = new int[m];
    int[] col = new int[n];
    int res = 0;
    for(int i = 0; i < m; i ++){
        for(int j = 0; j < n; j ++){
            if(picture[i][j] == 'B'){
                col[j]++;
                if(row[i] == 0) row[i] = j + 1;// give a offset so we can deal with the j=0 situation
                                               // you can change to j+ any offset.
                else row[i] = -1;
            }
        }
    }
    for(int r : row){
        if(r > 0 && col[r - 1] == 1) res++; // remove the offset
    }
 
    return res;
}

X.
https://www.godwinls.com/archives/119
https://discuss.leetcode.com/topic/81680/java-o-nm-time-with-o-n-m-space-and-o-1-space-solutions
first traverse record how many ‘B’ in each col and each row, second traverse when we find a ‘B’ check whether row[i]==1 && col[j]==1.
Time complexity O(mn), Space complexity O(m+n);
O(nm) Time, O(n+m) Space Solution:
public int findLonelyPixel(char[][] picture) {
    int n = picture.length, m = picture[0].length;
    
    int[] rowCount = new int[n], colCount = new int[m];
    for (int i=0;i<n;i++) 
        for (int j=0;j<m;j++) 
            if (picture[i][j] == 'B') { rowCount[i]++; colCount[j]++; }

    int count = 0;
    for (int i=0;i<n;i++) 
        for (int j=0;j<m;j++) 
            if (picture[i][j] == 'B' && rowCount[i] == 1 && colCount[j] == 1) count++;
                
    return count;
}
X.
O(mn) time, O(m)
we can also use a min(m,n) space just record the col ‘B’s/row ‘B’s, then during the second traverse for each row/col, use two variables: count and pos, when we find a ‘B’, update count and pos, then after we finish this row/col, we check whether count==1 && col[last]/row[last]==1, if so, result++; this reduce our space complexity to min(m,n)+2, which is O(min(m,n));
https://discuss.leetcode.com/topic/81703/java-o-mn-time-o-m-space-28ms
thought is very simple, we can easily count how many times B occurs in each row. But how can we know if this col has existing B?
for example, input is
W B B B
B W W W
W W W B
W W W B
we can maintain an array calls colArray[], which is used to record how many times the B occurs in each column. Then solution is simple
    public int findLonelyPixel(char[][] picture) {
        if (picture == null || picture.length == 0 || picture[0].length == 0) return 0;

        int[] colArray = new int[picture[0].length];
        for (int i = 0; i < picture.length; i++) {
            for (int j = 0; j < picture[0].length; j++) {
                if (picture[i][j] == 'B') colArray[j]++;
            }
        }

        int ret = 0;
        for (int i = 0; i < picture.length; i++) {
            int count = 0, pos = 0;
            for (int j = 0; j < picture[0].length; j++) {
                if (picture[i][j] == 'B') {
                    count++;
                    pos = j;
                }
            }
            if (count == 1 && colArray[pos] == 1) ret++;
        }
        return ret;
    }

X. https://eugenejw.github.io/2017/07/leetcode-531
    def findLonelyPixel(self, picture):
        """
        :type picture: List[List[str]]
        :rtype: int
        """
        ret = 0
        row = [0] * len(picture[0])
        col = [0] * len(picture)
        for i in xrange(len(picture)):
            for j in xrange(len(picture[0])):
                if picture[i][j] == 'B':
                    row[j] += 1
                    col[i] += 1
                    
        for i in xrange(len(picture)):
            if col[i] == 1:
                for j in xrange(len(picture[0])):
                    if picture[i][j] == 'B':
                        if row[j] == 1:
                            ret += 1
        return ret
https://www.jianshu.com/p/1a55970e2ebc
    public int findLonelyPixel(char[][] picture) {
        int n = picture.length, m = picture[0].length;

        int[] rowCount = new int[n], colCount = new int[m];
        for (int i=0;i<n;i++) {
            for (int j=0;j<m;j++) { 
                if (picture[i][j] == 'B') { 
                    rowCount[i]++; colCount[j]++; 
                }
            }
        }

        int count = 0;
        for (int i=0;i<n;i++) {
            for (int j=0;j<m;j++) { 
                if (picture[i][j] == 'B' && rowCount[i] == 1 && colCount[j] == 1) count++;
            }
        }

        return count;
    }
http://blog.csdn.net/qq_27262609/article/details/60571980
  1.     public int findLonelyPixel(char[][] picture) {  
  2.         int count=0;  
  3.         HashMap<Integer,Integer> row =new HashMap<>();  
  4.         HashMap<Integer,Integer> column =new HashMap<>();  
  5.         for(int i=0;i<picture.length;i++){  
  6.             for(int j=0;j<picture[0].length;j++){  
  7.                 if(picture[i][j]=='B'){  
  8.                     if(row.containsKey(i)){  
  9.                         row.put(i,row.get(i)+1);  
  10.                     }else{  
  11.                         row.put(i,1);  
  12.                     }  
  13.                     if(column.containsKey(j)){  
  14.                         column.put(j,column.get(j)+1);  
  15.                     }else{  
  16.                         column.put(j,1);   
  17.                     }  
  18.                 }  
  19.             }  
  20.         }  
  21.         for(int i=0;i<picture.length;i++){  
  22.             for(int j=0;j<picture[0].length;j++){  
  23.                 if(picture[i][j]=='B'&&row.containsKey(i)&&row.get(i)==1&&column.containsKey(j)&&column.get(j)==1){  
  24.                     count++;  
  25.                 }  
  26.             }  
  27.         }  
  28.         return count;  
  29.     }  

X. DFS for fun
https://www.cnblogs.com/lightwindy/p/9666798.html
public int findLonelyPixel(char[][] picture) {
    int numLone = 0;
    for (int row = 0; row < picture.length; row++) {
        for (int col = 0; col < picture[row].length; col++) {
            if (picture[row][col] == 'W') {
                continue;
            }
            if (dfs(picture, row - 1, col, new int[] {-1, 0}) && dfs(picture, row + 1, col, new int[] {1, 0})
             && dfs(picture, row, col - 1, new int[] {0, -1}) && dfs(picture, row, col + 1, new int[] {0, 1})) {
                numLone++;
            }
        }
    }
    return numLone;
}

// use dfs to find if current pixel is lonely
private boolean dfs(char[][] picture, int row, int col, int[] increase) {
    // base case
    if (row < 0 || row >= picture.length || col < 0 || col >= picture[0].length) {
        return true;
    } else if (picture[row][col] == 'B') {
        return false;
    }
    // recursion
    return dfs(picture, row + increase[0], col + increase[1], increase);
}

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts