Sunday, October 30, 2016

LeetCode 444 - Sequence Reconstruction


http://bookshadow.com/weblog/2016/10/30/leetcode-sequence-reconstruction/
Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. The org sequence is a permutation of the integers from 1 to n, with 1 ≤ n ≤ 104. Reconstruction means building a shortest common supersequence of the sequences in seqs (i.e., a shortest sequence so that all sequences in seqs are subsequences of it). Determine whether there is only one sequence that can be reconstructed from seqs and it is the org sequence.
Example 1:
Input:
org: [1,2,3], seqs: [[1,2],[1,3]]

Output:
false

Explanation:
[1,2,3] is not the only one sequence that can be reconstructed, because [1,3,2] is also a valid sequence that can be reconstructed.
Example 2:
Input:
org: [1,2,3], seqs: [[1,2]]

Output:
false

Explanation:
The reconstructed sequence can only be [1,2].
Example 3:
Input:
org: [1,2,3], seqs: [[1,2],[1,3],[2,3]]

Output:
true

Explanation:
The sequences [1,2], [1,3], and [2,3] can uniquely reconstruct the original sequence [1,2,3].
Example 4:
Input:
org: [4,1,5,2,6,3], seqs: [[5,2,6,3],[4,1,5,2]]

Output:
true
解法I 拓扑排序(Topological Sort)
将seqs中的各序列seq按照其中元素出现的先后顺序建立有向图g。

例如seqs中的某序列seq = [1, 2, 3],对应有向图,顶点为1, 2, 3;边为(1, 2), (2, 3)。

利用数组indeg记录各顶点的入度(indegree),sucset记录各顶点的后继(边)。

然后对图g执行拓扑排序,将得到的排序结果与原始序列org作比对即可。
def sequenceReconstruction(self, org, seqs): """ :type org: List[int] :type seqs: List[List[int]] :rtype: bool """ size = len(org) indeg = [0] * size sucset = [set() for x in range(size)] if not seqs: return False for seq in seqs: if any(s > size or s < 1 for s in seq): return False for i in range(1, len(seq)): if seq[i] not in sucset[seq[i - 1] - 1]: indeg[seq[i] - 1] += 1 sucset[seq[i - 1] - 1].add(seq[i]) q = [i for i in org if not indeg[i - 1]] for x in range(size): if len(q) != 1 or q[0] != org[x]: return False nq = [] for suc in sucset[q[0] - 1]: indeg[suc - 1] -= 1 if not indeg[suc - 1]: nq.append(suc) q = nq return True

https://discuss.leetcode.com/topic/65948/java-solution-using-bfs-topological-sort
http://www.geeksforgeeks.org/topological-sorting/
Time Complexity: The above algorithm is simply DFS with an extra stack. So time complexity is same as DFS which is O(V+E).
http://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
Time Complexity: The outer for loop will be executed V number of times and the inner for loop will be executed E number of times, Thus overall time complexity is O(V+E).
http://www.drdobbs.com/database/topological-sorting/184410262
The overall time complexity of this basic algorithm is O(n+m). The O(n) comes from the number of times that the while loop (and initial for loop) is executed, and the O(m) from the nested for loop.
Although there is no way to calculate how many times the inner loop will be executed on any one iteration of the outer loop, it will only be executed once for each successor of each member, which means that the total number of times that it will be executed is the total number of successors of all the members -- or the total number of relations.


Space complexity is also O(n+m). The O(n) component comes from the predecessor count information stored for each member, and the maximum length of the auxiliary queue. The O(m) comes from storing the successors for each member; once again, the total number of successors is the number of relations, so O(m).
    public boolean sequenceReconstruction(int[] org, int[][] seqs) {
        Map<Integer, Set<Integer>> map = new HashMap<>();
        Map<Integer, Integer> indegree = new HashMap<>();
        
        for(int[] seq: seqs) {
            if(seq.length == 1) { // no need to handle this specially
                if(!map.containsKey(seq[0])) {
                    map.put(seq[0], new HashSet<>());
                    indegree.put(seq[0], 0);
                }
            } else {
                for(int i = 0; i < seq.length - 1; i++) {
                    if(!map.containsKey(seq[i])) {
                        map.put(seq[i], new HashSet<>());
                        indegree.put(seq[i], 0);
                    }

                    if(!map.containsKey(seq[i + 1])) {
                        map.put(seq[i + 1], new HashSet<>());
                        indegree.put(seq[i + 1], 0);
                    }

                    if(map.get(seq[i]).add(seq[i + 1])) {
                        indegree.put(seq[i + 1], indegree.get(seq[i + 1]) + 1);
                    }
                }
            }
        }

        Queue<Integer> queue = new LinkedList<>();
        for(Map.Entry<Integer, Integer> entry: indegree.entrySet()) {
            if(entry.getValue() == 0) queue.offer(entry.getKey());
        }

        int index = 0;
        while(!queue.isEmpty()) {
            int size = queue.size();
            if(size > 1) return false; //\\
            int curr = queue.poll();
            if(index == org.length || curr != org[index++]) return false;
            for(int next: map.get(curr)) {
                indegree.put(next, indegree.get(next) - 1);
                if(indegree.get(next) == 0) queue.offer(next);
            }
        }
        return index == org.length && index == map.size();
    }
https://discuss.leetcode.com/topic/65948/java-solution-using-bfs-topological-sort/5
public boolean sequenceReconstruction(int[] org, int[][] seqs) {
    Map<Integer, List<Integer>> graph = new HashMap<>();
    Map<Integer, Integer> indegree = new HashMap<>();
    for (int[] seq : seqs) {
        for (int i = 0; i < seq.length; i++) {
            graph.putIfAbsent(seq[i], new ArrayList<Integer>());
            indegree.putIfAbsent(seq[i], 0);
            if (i > 0) {
                graph.get(seq[i - 1]).add(seq[i]);
                indegree.put(seq[i], indegree.get(seq[i]) + 1);
            }
        }
    }
    if (org.length != indegree.size()) {
        return false;
    }
    
    Queue<Integer> q = new LinkedList<>();
    for (Map.Entry<Integer, Integer> entry : indegree.entrySet()) {
        if (entry.getValue() == 0) {
            q.add(entry.getKey());
        }
    }
    
    int index = 0;
    while (!q.isEmpty()) {
        if (q.size() > 1) {
            return false;
        }
        int curr = q.poll();
        if (org[index++] != curr) {
            return false;
        }
        for (int nb : graph.get(curr)) {
            indegree.put(nb, indegree.get(nb) - 1);
            if (indegree.get(nb) == 0) {
                q.add(nb);
            }
        }
    }
    return index == org.length;
}
解法II “边检查法”
首先建立原始序列org中各元素到其下标的映射indices。

遍历seqs,记当前序列为seq,遍历seq;

记seq中相邻元素为pre, cur,若indices[pre] > indices[cur],说明与org中各元素的前后关系产生矛盾,返回False

否则,将(pre, cur)加入边集edges。

最后遍历org,判断其中两两相邻元素构成的边是否都在edges中,若是返回True,否则返回False。
def sequenceReconstruction(self, org, seqs): """ :type org: List[int] :type seqs: List[List[int]] :rtype: bool """ indices = {e : i for i, e in enumerate(org)} edges = set() if not seqs: return False for seq in seqs: for s in seq: if s not in indices: return False for i in range(1, len(seq)): pre, cur = seq[i - 1], seq[i] if indices[pre] > indices[cur]: return False edges.add((pre, cur)) for x in range(1, len(org)): if (org[x - 1], org[x]) not in edges: return False return True

https://discuss.leetcode.com/topic/65633/very-short-solution-with-explanation
For org to be uniquely reconstructible from seqs we need to satisfy 2 conditions:
  1. Every sequence in seqs should be a subsequence in org. This part is obvious.
  2. Every 2 consecutive elements in org should be consecutive elements in some sequence from seqs. Why is that? Well, suppose condition 1 is satisfied. Then for 2 any consecutive elements x and y in org we have 2 options.
    • We have both xand y in some sequence from seqs. Then (as condition 1 is satisfied) they must be consequtive elements in this sequence.
    • There is no sequence in seqs that contains both x and y. In this case we cannot uniquely reconstruct org from seqsas sequence with x and y switched would also be a valid original sequence for seqs.
So this are 2 necessary criterions. It is pretty easy to see that this are also sufficient criterions for org to be uniquely reconstructible (there is only 1 way to reconstruct sequence when we know that condition 2 is satisfied).
To implement this idea I have idxs hash that maps item to its index in org sequence to check condition 1. And I have pairs set that holds all consequitive element pairs for sequences from seqs to check condition 2 (I also consider first elements to be paired with previous undefined elements, it is necessary to check this).
public boolean sequenceReconstruction(int[] org, int[][] seqs) {
        if(seqs == null || seqs.length == 0){
            return false;
        }
        int orgLen = org.length;
        int[] idx = new int[orgLen + 1];
        boolean[] pairs = new boolean[orgLen];
        
        for(int i = 0; i < orgLen; i++){
            idx[org[i]] = i;
        }
        
        for(int[] seq : seqs){
            for(int i = 0; i < seq.length; i++){
                if(seq[i] > orgLen || seq[i] < 0){
                    return false;
                }
                
                if(i > 0 && idx[seq[i - 1]] >= idx[seq[i]]){
                    return false;
                }
                
                if(i > 0 && idx[seq[i - 1]] + 1 == idx[seq[i]]){
                    pairs[idx[seq[i - 1]]] = true;
                }
            }
        }
        
        for(int i = 0; i < orgLen - 1; i++){
            if(!pairs[i]){
                return false;
            }
        }
        
        return true;
    }

https://discuss.leetcode.com/topic/65961/simple-solution-one-pass-using-only-array-c-92ms-java-16ms/
After reading a few posts on this topic, I guess most of people over-think about this problem.
IMHO, We don't need to implement any graph theory expressively here; rather, it is sufficient to just check if every two adjacent elements also appears adjacently in the sub-sequences. (and of course, some basic boundary checking is also necessary)
    public boolean sequenceReconstruction(int[] org, int[][] seqs) {
        if(seqs.length == 0) return false; 
        int[] pos = new int[org.length+1];
        for(int i=0;i<org.length;++i) pos[org[i]] = i;
        boolean[] flags = new boolean[org.length+1];
        int toMatch = org.length-1;
        for(int[] v : seqs) {
            for(int i=0;i<v.length;++i) {
                if(v[i]<=0 || v[i] > org.length)return false;
                if(i==0)continue;
                int x = v[i-1], y = v[i];
                if(pos[x] >= pos[y])return false;//\\
                if(flags[x] == false && pos[x]+1 == pos[y]) {
                    flags[x] = true;
                    --toMatch;
                }
            }
        }
        return toMatch == 0;
    }
The basic idea is to count how many numbers are smaller(self include) than the current number.
We then compare this count to the org.
It is pretty like the idea of count sort.
    public boolean sequenceReconstruction(int[] org, int[][] seqs) {
        int len = org.length;
        int[] map = new int[len + 1];//map number to its index
        Arrays.fill(map, -1);
        int[] memo = new int[org.length];//count how many numbers are smaller(on the right)
        for (int i = 0; i < len; i++) {
            map[org[i]] = i;
        }
        for (int[] seq : seqs) {
            if (seq.length == 0) continue;
            int prev = seq[0];
            if (prev <= 0 || prev > len || map[prev] == -1) return false;
            for (int i = 1; i < seq.length; i++) {
                int curr = seq[i];
                if (curr <= 0 || curr > len || map[curr] == -1) return false;
                memo[map[prev]] = Math.max(memo[map[prev]], len - map[curr] + 1);
                prev = curr;
            }
            memo[map[prev]] = Math.max(memo[map[prev]], 1);
        }
        for (int i = 0; i < memo.length; i++) {
            if (memo[i] != len - i) return false;
        }
        return true;
    }

No comments:

Post a Comment

Labels

GeeksforGeeks (959) Algorithm (811) LeetCode (637) to-do (598) Review (340) Classic Algorithm (334) Classic Interview (299) Dynamic Programming (263) Google Interview (234) LeetCode - Review (229) Tree (146) POJ (137) Difficult Algorithm (136) EPI (127) Different Solutions (118) Bit Algorithms (110) Cracking Coding Interview (110) Smart Algorithm (109) Math (91) HackerRank (85) Lintcode (83) Binary Search (73) Graph Algorithm (73) Greedy Algorithm (61) Interview Corner (61) List (58) Binary Tree (56) DFS (56) Algorithm Interview (53) Advanced Data Structure (52) Codility (52) ComProGuide (52) LeetCode - Extended (47) USACO (46) Geometry Algorithm (45) BFS (43) Data Structure (42) Mathematical Algorithm (42) ACM-ICPC (41) Interval (38) Jobdu (38) Recursive Algorithm (38) Stack (38) String Algorithm (38) Binary Search Tree (37) Knapsack (37) Codeforces (36) Introduction to Algorithms (36) Matrix (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) Trie (33) prismoskills (33) Segment Tree (32) Space Optimization (32) Union-Find (32) Backtracking (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Data Structure Design (29) Company-Zenefits (28) Microsoft 100 - July (28) to-do-must (28) Random (27) Sliding Window (26) GeeksQuiz (25) Logic Thinking (25) hihocoder (25) High Frequency (23) Palindrome (23) Algorithm Game (22) Company - LinkedIn (22) Graph (22) Queue (22) DFS + Review (21) Hash (21) TopCoder (21) Binary Indexed Trees (20) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Pre-Sort (20) Company-Facebook (19) UVA (19) Probabilities (18) Follow Up (17) Codercareer (16) Company-Uber (16) Game Theory (16) Heap (16) Shortest Path (16) String Search (16) Topological Sort (16) Tree Traversal (16) itint5 (16) Iterator (15) Merge Sort (15) O(N) (15) Difficult (14) Number (14) Number Theory (14) Post-Order Traverse (14) Priority Quieue (14) Amazon Interview (13) BST (13) Basic Algorithm (13) Bisection Method (13) Codechef (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) KMP (12) Long Increasing Sequence(LIS) (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Ordered Stack (11) Princeton (11) Tree DP (11) 挑战程序设计竞赛 (11) Binary Search - Bisection (10) Company - Microsoft (10) Company-Airbnb (10) Euclidean GCD (10) Facebook Hacker Cup (10) HackerRank Easy (10) Reverse Thinking (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) X Sum (10) Coin Change (9) Lintcode - Review (9) Mathblog (9) Max-Min Flow (9) Stack Overflow (9) Stock (9) Two Pointers (9) Book Notes (8) Bottom-Up (8) DP-Space Optimization (8) Divide and Conquer (8) Graph BFS (8) LeetCode - DP (8) LeetCode Hard (8) Prefix Sum (8) Prime (8) System Design (8) Tech-Queries (8) Time Complexity (8) Use XOR (8) 穷竭搜索 (8) Algorithm Problem List (7) DFS+BFS (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Linked List (7) Longest Common Subsequence(LCS) (7) Math-Divisible (7) Miscs (7) O(1) Space (7) Probability DP (7) Radix Sort (7) Simulation (7) Suffix Tree (7) Xpost (7) n00tc0d3r (7) 蓝桥杯 (7) Bucket Sort (6) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Level Order Traversal (6) Manacher (6) Minimum Spanning Tree (6) One Pass (6) Programming Pearls (6) Quick Select (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Suffix Array (6) Threaded (6) reddit (6) AI (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Crazyforcode (5) DFS+Cache (5) DP-Multiple Relation (5) DP-Print Solution (5) Dutch Flag (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Inversion (5) Java (5) Kadane - Extended (5) Kadane’s Algorithm (5) Matrix Chain Multiplication (5) Microsoft Interview (5) Morris Traversal (5) Pruning (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sweep Line (5) Traversal Once (5) TreeMap (5) jiuzhang (5) to-do-2 (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Anagram (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Company-Amazon (4) Consistent Hash (4) Convex Hull (4) Cycle (4) DP-Include vs Exclude (4) Dijkstra (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) Left and Right Array (4) MinMax (4) Multiple Data Structures (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Pre-Sum (4) Probability (4) Programcreek (4) Quick Sort (4) Spell Checker (4) Stock Maximize (4) Subsets (4) Sudoku (4) Symbol Table (4) TreeSet (4) Triangle (4) Water Jug (4) Word Ladder (4) algnotes (4) fgdsb (4) 最大化最小值 (4) A Star (3) Abbreviation (3) Algorithm - Brain Teaser (3) Algorithm Design (3) Anagrams (3) B Tree (3) Big Data Algorithm (3) Binary Search - Smart (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Edit Distance (3) Expression (3) Finite Automata (3) Forward && Backward Scan (3) Github (3) GoLang (3) Include vs Exclude (3) Joseph (3) Jump Game (3) Knapsack-多重背包 (3) LeetCode - Bit (3) LeetCode - TODO (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Maze (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Stack - Smart (3) State Machine (3) Streaming Algorithm (3) Subset Sum (3) Subtree (3) Transform Tree (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Search (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binomial Coefficient (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) GoHired (2) Graham Scan (2) Graph - Bipartite (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Knuth Shuffle (2) LeetCode - Recursive (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) MST (2) MST-Kruskal (2) Math-Remainder Queue (2) Matrix Power (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Palindromic (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) Shuffle (2) Sieve of Eratosthenes (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Stream (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - How To (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Snapchat (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Easy (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Kosaraju’s algorithm (1) Kruskal (1) Kruskal MST (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode Diffcult (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Median (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Successor (1) Offline Algorithm (1) PAT (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) Probabilistic Data Structure (1) Proof (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Regular Expression (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie + DFS (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Wiggle Sort (1) Wikipedia (1) Yahoo Interview (1) ZOJ (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts