Monday, October 17, 2016

LeetCode 425 - Word Squares


http://bookshadow.com/weblog/2016/10/16/leetcode-word-squares/
Given a set of words (without duplicates), find all word squares you can build from them.
A sequence of words forms a valid word square if the kth row and column read the exact same string, where 0 ≤ k < max(numRows, numColumns).
For example, the word sequence ["ball","area","lead","lady"] forms a word square because each word reads the same both horizontally and vertically.
b a l l
a r e a
l e a d
l a d y
Note:
  1. There are at least 1 and at most 1000 words.
  2. All words will have the exact same length.
  3. Word length is at least 1 and at most 5.
  4. Each word contains only lowercase English alphabet a-z.
Example 1:
Input:
["area","lead","wall","lady","ball"]

Output:
[
  [ "wall",
    "area",
    "lead",
    "lady"
  ],
  [ "ball",
    "area",
    "lead",
    "lady"
  ]
]

Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
Example 2:
Input:
["abat","baba","atan","atal"]

Output:
[
  [ "baba",
    "abat",
    "baba",
    "atan"
  ],
  [ "baba",
    "abat",
    "baba",
    "atal"
  ]
]

Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
X. DFS
https://discuss.leetcode.com/topic/63516/explained-my-java-solution-using-trie-126ms-16-16
My first approach is brute-force, try every possible word sequences, and use the solution of Problem 422 (https://leetcode.com/problems/valid-word-square/) to check each sequence. This solution is straightforward, but too slow (TLE).
A better approach is to check the validity of the word square while we build it.
Example: ["area","lead","wall","lady","ball"]
We know that the sequence contains 4 words because the length of each word is 4.
Every word can be the first word of the sequence, let's take "wall" for example.
Which word could be the second word? Must be a word start with "a" (therefore "area"), because it has to match the second letter of word "wall".
Which word could be the third word? Must be a word start with "le" (therefore "lead"), because it has to match the third letter of word "wall" and the third letter of word "area".
What about the last word? Must be a word start with "lad" (therefore "lady"). For the same reason above.
The picture below shows how the prefix are matched while building the sequence.
0_1476809138708_wordsquare.png
In order for this to work, we need to fast retrieve all the words with a given prefix. There could be 2 ways doing this:
  1. Using a hashtable, key is prefix, value is a list of words with that prefix.
  2. Trie, we store a list of words with the prefix on each trie node.
One pic to help understand the Trie structure.
The only difference between the trie here and the normal trie is that we hold one more list of all the words which have the prefix(from the root char to the current node char).
alt text

    class TrieNode {
        List<String> startWith;
        TrieNode[] children;

        TrieNode() {
            startWith = new ArrayList<>();
            children = new TrieNode[26];
        }
    }

    class Trie {
        TrieNode root;

        Trie(String[] words) {
            root = new TrieNode();
            for (String w : words) {
                TrieNode cur = root;
                for (char ch : w.toCharArray()) {
                    int idx = ch - 'a';
                    if (cur.children[idx] == null)
                        cur.children[idx] = new TrieNode();
                    cur.children[idx].startWith.add(w);
                    cur = cur.children[idx];
                }
            }
        }

        List<String> findByPrefix(String prefix) {
            List<String> ans = new ArrayList<>();
            TrieNode cur = root;
            for (char ch : prefix.toCharArray()) {
                int idx = ch - 'a';
                if (cur.children[idx] == null)
                    return ans;

                cur = cur.children[idx];
            }
            ans.addAll(cur.startWith);
            return ans;
        }
    }

    public List<List<String>> wordSquares(String[] words) {
        List<List<String>> ans = new ArrayList<>();
        if (words == null || words.length == 0)
            return ans;
        int len = words[0].length();
        Trie trie = new Trie(words);
        List<String> ansBuilder = new ArrayList<>();
        for (String w : words) {
            ansBuilder.add(w);
            search(len, trie, ans, ansBuilder);
            ansBuilder.remove(ansBuilder.size() - 1);
        }

        return ans;
    }

    private void search(int len, Trie tr, List<List<String>> ans,
            List<String> ansBuilder) {
        if (ansBuilder.size() == len) {
            ans.add(new ArrayList<>(ansBuilder));
            return;
        }

        int idx = ansBuilder.size();
        StringBuilder prefixBuilder = new StringBuilder();
        for (String s : ansBuilder)
            prefixBuilder.append(s.charAt(idx));
        List<String> startWith = tr.findByPrefix(prefixBuilder.toString());
        for (String sw : startWith) {
            ansBuilder.add(sw);
            search(len, tr, ans, ansBuilder);
            ansBuilder.remove(ansBuilder.size() - 1);
        }
    }
https://discuss.leetcode.com/topic/63532/121ms-java-solution-using-trie-and-backtracking
    TrieNode root = new TrieNode();
    public List<List<String>> wordSquares(String[] words) {
        List<List<String>> ans = new ArrayList<>();
        if(words.length == 0) return ans;
        buildTrie(words);
        int length = words[0].length();
        findSquare(ans, length, new ArrayList<>());
        return ans;
    }
    
    private void findSquare(List<List<String>> ans, int length, List<String> temp) {
        if(temp.size() == length) {
            ans.add(new ArrayList<>(temp));
            return;
        }
        int index = temp.size();
        StringBuilder sb = new StringBuilder();
        for(String s : temp) {
            sb.append(s.charAt(index));
        }
        String s = sb.toString();
        TrieNode node = root;
        for(int i = 0; i < s.length(); i++) {
            if(node.next[s.charAt(i) - 'a'] != null) {
                node = node.next[s.charAt(i) - 'a'];
            } else {
                node = null;
                break;
            }
        }
        if(node != null) {
            for(String next : node.words) {
                temp.add(next);
                findSquare(ans, length, temp);
                temp.remove(temp.size() - 1);
            }
        }
    }
    
    private void buildTrie(String[] words) {
        for(String word : words) {
            TrieNode node = root;
            char[] array = word.toCharArray();
            for(char c : array) {
                node.words.add(word);
                if(node.next[c - 'a'] == null) {
                    node.next[c - 'a'] = new TrieNode();
                }
                node = node.next[c - 'a'];
            }
            node.words.add(word);
        }
    }
    
    class TrieNode {
        TrieNode[] next = new TrieNode[26];
        List<String> words = new ArrayList<>();
    }

https://discuss.leetcode.com/topic/63417/181-ms-java-solution-intuitive-backtracking
http://bookshadow.com/weblog/2016/10/16/leetcode-word-squares/
深度优先搜索(DFS)+ 剪枝(Pruning)
首先构建一个单词前缀prefix->单词word的字典mdict

深度优先搜索search(word, line),其中word是当前单词,line是行数

利用变量matrix记录当前已经生成的单词

前缀prefix = matrix[0..line][line],如果prefix对应单词不存在,则可以剪枝

否则枚举mdict[prefix],并递归搜索

X. Using Trie
https://discuss.leetcode.com/topic/63516/my-java-solution-using-trie
 class TrieNode {
  List<String> startWith;
  TrieNode[] children;

  TrieNode() {
   startWith = new ArrayList<>();
   children = new TrieNode[26];
  }
 }

 class Trie {
  TrieNode root;

  Trie(String[] words) {
   root = new TrieNode();
   for (String w : words) {
    TrieNode cur = root;
    for (char ch : w.toCharArray()) {
     int idx = ch - 'a';
     if (cur.children[idx] == null)
      cur.children[idx] = new TrieNode();
     cur.children[idx].startWith.add(w);
     cur = cur.children[idx];
    }
   }
  }

  List<String> findPrefix(String prefix) {
   List<String> ans = new ArrayList<>();
   TrieNode cur = root;
   for (char ch : prefix.toCharArray()) {
    int idx = ch - 'a';
    if (cur.children[idx] == null)
     return ans;

    cur = cur.children[idx];
   }
   ans.addAll(cur.startWith);
   return ans;
  }
 }

 public List<List<String>> wordSquares(String[] words) {
  List<List<String>> ans = new ArrayList<>();
  if (words == null || words.length == 0)
   return ans;
  int n = words.length;
  int len = words[0].length();
  Trie trie = new Trie(words);
  List<String> ansBuilder = new ArrayList<>();
  for (String w : words) {
   ansBuilder.add(w);
   search(words, n, len, trie, ans, ansBuilder);
   ansBuilder.remove(ansBuilder.size() - 1);
  }

  return ans;
 }

 private void search(String[] ws, int n, int len, Trie tr,
   List<List<String>> ans, List<String> ansBuilder) {
  if (ansBuilder.size() == len) {
   ans.add(new ArrayList<>(ansBuilder));
   return;
  }

  int idx = ansBuilder.size();
  StringBuilder prefix = new StringBuilder();
  for (String s : ansBuilder)
   prefix.append(s.charAt(idx));
  List<String> startWith = tr.findPrefix(prefix.toString());
  for (String sw : startWith) {
   ansBuilder.add(sw);
   search(ws, n, len, tr, ans, ansBuilder);
   ansBuilder.remove(ansBuilder.size() - 1);
  }
 }
https://discuss.leetcode.com/topic/64770/java-dfs-trie-54-ms-98-so-far/2


No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (985) Algorithm (795) Review (759) to-do (631) LeetCode - Review (506) Classic Algorithm (324) Dynamic Programming (292) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Search (81) Binary Tree (80) Graph Algorithm (74) Greedy Algorithm (72) DFS (66) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) Codility (54) BFS (53) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Recursive Algorithm (39) LeetCode Hard (38) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Hash (22) Post-Order Traverse (22) Binary Indexed Trees (21) Bisection Method (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) Follow Up (19) O(N) (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Find Rule (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Tree Without Tree Predefined (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts