Wednesday, September 7, 2016

LeetCode 392 - Is Subsequence


http://www.cnblogs.com/grandyang/p/5842033.html
Given a string s and a string t, check if s is subsequence of t.
You may assume that there is only lower case English letters in both s and tt is potentially a very long (length ~= 500,000) string, and s is a short string (<=100).
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ace" is a subsequence of "abcde" while "aec" is not).
Example 1:
s = "abc"t = "ahbgdc"
Return true.
Example 2:
s = "axc"t = "ahbgdc"
Return false.
Follow up:
If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?
这道题算比较简单的一种,我们可以用两个指针分别指向字符串s和t,然后如果字符相等,则i和j自增1,反之只有j自增1,最后看i是否等于s的长度,等于说明s已经遍历完了,而且字符都有在t中出现过
    bool isSubsequence(string s, string t) {
        if (s.empty()) return true;
        int i = 0, j = 0;
        while (i < s.size() && j < t.size()) {
            if (s[i] == t[j]) {
                ++i; ++j;
            } else {
                ++j;
            }
        }
        return i == s.size();
    }
};
    bool isSubsequence(string s, string t) {
        if (s.empty()) return true;
        int i = 0, j = 0;
        while (i < s.size() && j < t.size()) {
            if (s[i] == t[j]) ++i;
            ++j;
        }
        return i == s.size();
    }
http://blog.csdn.net/mebiuw/article/details/52444480
No need to convert to char[]
public boolean isSubsequence(String s, String t) { int i=0,j=0; char[] ss=s.toCharArray(); char[] tt=t.toCharArray(); while(i<ss.length && j<tt.length){ if(ss[i] == tt[j]){ i++; } j++; } return i==s.length(); }
http://www.cnblogs.com/dongling/p/5843697.html
public boolean isSubsequence(String s, String t) { if(s==null||s.length()==0) return true; int index=0; char ch; for(int i=0;i<s.length();i++){ ch=s.charAt(i); while(index<t.length()&&t.charAt(index)!=ch){ index++; } if(index>=t.length()){ return false; } index++; } return true; }
X. https://discuss.leetcode.com/topic/57205/java-only-2ms-much-faster-than-normal-2-pointers
    public boolean isSubsequence(String s, String t) 
    {
        if(t.length() < s.length()) return false;
        int prev = 0;
        for(int i = 0; i < s.length();i++)
        {
            char tempChar = s.charAt(i);
            prev = t.indexOf(tempChar,prev);
            if(prev == -1) return false;
            prev++;
        }
        
        return true;
    }
X. Follow up
https://scottduan.gitbooks.io/leetcode-review/content/is_subsequence.html
If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you want to check one by one to see if T has its subsequence. In this scenario, how would you change your code?
https://discuss.leetcode.com/topic/57994/java-binary-search-using-treeset-got-tle
https://discuss.leetcode.com/topic/60134/java-code-for-the-problem-two-pointer-and-the-follow-up-binary-search
Java binary search using TreeSet, but got TLE. For single s, it performs worse than linear 2-pointer solution for sure, but if there are many s like in the follow up, should it be better since t only got processed once?
    public boolean isSubsequence(String s, String t) {
        int sLen = s.length(), tLen = t.length();
        if(sLen == 0) return true;
        if(sLen > tLen) return false;
        
        Map<Character, TreeSet<Integer>> map = new HashMap<>();
        for(int i = 0; i < tLen; i++) {
            char c = t.charAt(i);
            if(!map.containsKey(c)) map.put(c, new TreeSet<Integer>());
            map.get(c).add(i);
        }
        
        int lowerIndex = -1;
        for(int j = 0; j < sLen; j++) {
            char c = s.charAt(j);
            if(!map.containsKey(c)) return false;
            
            Integer index = map.get(c).higher(lowerIndex);
            if(index == null) return false;
            lowerIndex = index;
        }
        
        return true;
    }
I think the Map and TreeSet could be simplified by Array and binarySearch. Since we scan T from beginning to the end (index itself is in increasing order), List will be sufficient. Then we can use binarySearch to replace with TreeSet ability which is a little overkill for this problem.

Binary search:
  • record the indexes for each character in t, if s[i] matches t[j], then s[i+1] should match a character in t with index bigger than j. This can be reduced to find the first element larger than a value in an sorted array (find upper bound), which can be achieved using binary search.
Trie:

  • For example, if s1 has been matched, s1[last char] matches t[j]. Now, s2 comes, if s1 is a prefix of s2, i.e., s1 == s2.substr[0, i-1], we can start match s2 from s2[i], right?
  • So, the idea is to create a Trie for all string that have been matched so far. At a node, we record the position in t which matches this char represented by the node. Now, for an incoming string s, we first search the longest prefix in the Trie, find the matching position of the last prefix-char in t, say j. Then, we can start matching the first non-prefix-char of s from j+1.
  • Now, if we have done the preprocessing as stated in the binary search approach, we can be even faster.
    // Follow-up: O(N) time for pre-processing, O(Mlog?) for each S.
    // Eg-1. s="abc", t="bahbgdca"
    // idx=[a={1,7}, b={0,3}, c={6}]
    //  i=0 ('a'): prev=1
    //  i=1 ('b'): prev=3
    //  i=2 ('c'): prev=6 (return true)
    // Eg-2. s="abc", t="bahgdcb"
    // idx=[a={1}, b={0,6}, c={5}]
    //  i=0 ('a'): prev=1
    //  i=1 ('b'): prev=6
    //  i=2 ('c'): prev=? (return false)
    public boolean isSubsequence(String s, String t) {
        List<Integer>[] idx = new List[256]; // Just for clarity
        for (int i = 0; i < t.length(); i++) {
            if (idx[t.charAt(i)] == null)
                idx[t.charAt(i)] = new ArrayList<>();
            idx[t.charAt(i)].add(i);
        }
        
        int prev = 0;
        for (int i = 0; i < s.length(); i++) {
            if (idx[s.charAt(i)] == null) return false; // Note: char of S does NOT exist in T causing NPE
            int j = Collections.binarySearch(idx[s.charAt(i)], prev);
            if (j < 0) j = -j - 1;
            if (j == idx[s.charAt(i)].size()) return false;
            prev = idx[s.charAt(i)].get(j) + 1;
        }
        return true;
    }
X. https://discuss.leetcode.com/topic/57718/easy-to-understand-binary-search-solution
space complexity is length of t, we need to add an index value to our dictionary foreach element of t. You also have the overhead of the keys for t but this does not changed that fact that this is still O(length of t)
time complexity is 1 binary search through 1 dictionary entry for each character of s. Worst case the dictionary entry has all indexes of tso it's cost would be log of the length of t. Multiply that against length of s and you get O(length of s * log(length of t)) ???
https://discuss.leetcode.com/topic/58078/simple-c-code-as-well-as-the-followup-solution
My solution is to preprocessing, exactly constructing a hash map to store the positions for every character. Then scan the incoming string one by one, for every character, if there is no such character in the hash map, or the number of such character is greater than the original string, or most critically, the position is not behind the position of its previous character, it will return false. So I need another array to record the index for every character. The time complexity is just the sum of length of incoming strings???


we will build an array mem where mem[i+1][j+1] means that S[0..j] contains T[0..i] that many times as distinct subsequences. Therefor the result will be mem[T.length()][S.length()]. we can build this array rows-by-rows: the first row must be filled with 1. That's because the empty string is a subsequence of any string but only 1 time. So mem[0][j] = 1 for every j. So with this we not only make our lives easier, but we also return correct value if T is an empty string. the first column of every rows except the first must be 0. This is because an empty string cannot contain a non-empty string as a substring -- the very first item of the array: mem[0][0] = 1, because an empty string contains the empty string 1 time.
So the matrix looks like this:
  S 0123....j
T +----------+
  |1111111111|
0 |0         |
1 |0         |
2 |0         |
. |0         |
. |0         |
i |0         |
From here we can easily fill the whole grid: for each (x, y), we check if S[x] == T[y] we add the previous item and the previous item in the previous row, otherwise we copy the previous item in the same row. The reason is simple:
if the current character in S doesn't equal to current character T, then we have the same number of distinct subsequences as we had without the new character. if the current character in S equal to the current character T, then the distinct number of subsequences: the number we had before plus the distinct number of subsequences we had with less longer T and less longer S.
An example:
S: [acdabefbc] and T: [ab]
first we check with a:
           *  *
      S = [acdabefbc]
mem[1] = [0111222222]
then we check with ab:
               *  * ]
      S = [acdabefbc]
mem[1] = [0111222222]
mem[2] = [0000022244]
And the result is 4, as the distinct subsequences are:
  S = [a   b    ]
  S = [a      b ]
  S = [   ab    ]
  S = [   a   b ]

    if (s == null && t == null) {
        return true;
    }
    if (s == null || t == null) {
        return false;
    }
    int m = s.length();
    int n = t.length();
    boolean[][] dp = new boolean[n+1][m+1];
    for (int i = 0; i <= n; i++) {
        dp[i][0] = true;
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (t.charAt(i-1) == s.charAt(j-1)) {
                dp[i][j] = dp[i-1][j-1] || dp[i-1][j];
            } else {
                dp[i][j] = dp[i-1][j];
            }
            if (dp[i][m] == true) {
                return true;
            }
        }
    }
    return dp[n][m];
https://discuss.leetcode.com/topic/67167/java-code-for-the-follow-up-question/
public boolean isSubsequence(String s, String t) {
    if (s == null || t == null) return false;
    
    Map<Character, List<Integer>> map = new HashMap<>(); //<character, index>
    
    //preprocess t
    for (int i = 0; i < t.length(); i++) {
        char curr = t.charAt(i);
        if (!map.containsKey(curr)) {
            map.put(curr, new ArrayList<Integer>());
        }
        map.get(curr).add(i);
    }
    
    int prev = -1;  //index of previous character
    for (int i = 0; i < s.length(); i++) {
        char c = s.charAt(i);
        
        if (map.get(c) == null)  {
            return false;
        } else {
            List<Integer> list = map.get(c);
            prev = binarySearch(prev, list, 0, list.size() - 1);
            if (prev == -1) {
                return false;
            }
            prev++;
        }
    }
    
    return true;
}

private int binarySearch(int index, List<Integer> list, int start, int end) {
    while (start <= end) {
        int mid = start + (end - start) / 2;
        if (list.get(mid) < index) {
            start = mid + 1;
        } else {
            end = mid - 1;
        }
    }
    
    return start == list.size() ? -1 : list.get(start);
}
X. DP
http://blog.csdn.net/u014688145/article/details/71180132
public boolean isSubsequence(String s, String t){ if (s.isEmpty()) return true; int n = s.length(); boolean[] isSeq = new boolean[n]; int index = 0; for (int i = 0; i < t.length(); i++){ if (s.charAt(index) == t.charAt(i)){ isSeq[index++] = true; if (isSeq[n-1]) return true; } } return isSeq[n-1]; }


No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) LeetCode Hard (39) Recursive Algorithm (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) Post-Order Traverse (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) Binary Indexed Trees (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts