Friday, July 8, 2016

Longest Word


Given a list of words, write a program to find the longest word made of other words in the list.

Rather than simply looking up if the right side is in the array, we would recursively see if we can build the right side from the other elements in the array
http://www.shuati123.com/blog/2014/10/02/longest-word-made-from-other/
public static void printLongestWord(String[] arr) {
    Arrays.sort(arr, new LengthComparator());
    HashSet<String> set = new HashSet<String>();
    for (String str : arr) {
        set.add(str);
    }
    for (String word : arr) {
        if (canDivide(word, 0, set)) {
            System.out.println(word);
            return;
        }
    }
    System.out.println("can not find such word");
}

private static boolean canDivide(String word, int from, HashSet<String> set) {
    if (from == word.length()) {
        return true;
    }
    for (int i = from; i < word.length(); i++) {
        String str = word.substring(from, i + 1);
        if (from == 0 && i == word.length() - 1) {
            continue;
        } else if (!set.contains(str)) {
            continue;
        }
        if (canDivide(word, i + 1, set)) {
            return true;
        }
    }
    return false;
}

public static String printLongestWord(String arr[]) {
  HashMap<String, Boolean> map = new HashMap<String, Boolean>();
  for (String str : arr) {
    map.put(str, true);
  }
  Arrays.sort(arr, new LengthComparator()); // Sort by length
  for (String s : arr) {
    if (canBuildWord(s, true, map)) {
      System.out.println(s);
      return s;
    }
  }
  return "";
}

public static boolean canBuildWord(String str, boolean isOriginalWord, HashMap<String, Boolean> map) {
  if (map.containsKey(str) && !isOriginalWord) {
    return map.get(str);
  }
  for (int i = 1; i < str.length(); i++) {
    String left = str.substring(0, i);
    String right = str.substring(i);
    if (map.containsKey(left) && map.get(left) == true &&
      canBuildWord(right, false, map)) {
      return true;
    }
  }
  map.put(str, false);
  return false;
}

http://www.ardendertat.com/2012/06/15/programming-interview-questions-28-longest-compound-word/
We will use the trie data structure, also known as a prefix tree. Tries are space and time efficient structures for text storage and search.  They let words to share prefixes.


The complexity of this algorithm is O(kN) where N is the number of words in the input list, and k the maximum number of words in a compound word. The number k may vary from one list to another, but it’ll generally be a constant number like 5 or 10. So, the algorithm is linear in number of words in the list, which is an optimal solution to the problem.
class Node:
    def __init__(self, letter=None, isTerminal=False):
        self.letter=letter
        self.children={}
        self.isTerminal=isTerminal
def longestWord(words):
    #Add words to the trie, and pairs to the queue
    trie=Trie()
    queue=collections.deque()
    for word in words:
        prefixes=trie.getAllPrefixesOfWord(word)
        for prefix in prefixes:
            queue.append( (word, word[len(prefix):]) )
        trie.insert(word)
 
    #Process the queue
    longestWord=''
    maxLength=0
    while queue:
        word, suffix = queue.popleft()
        if suffix in trie and len(word)&gt;maxLength:
            longestWord=word
            maxLength=len(word)
        else:
            prefixes=trie.getAllPrefixesOfWord(suffix)
            for prefix in prefixes:
                queue.append( (word, suffix[len(prefix):]) )
 
    return longestWord

class Trie:
    def __init__(self):
        self.root=Node('')
 
    def __repr__(self):
        self.output([self.root])
        return ''
 
    def output(self, currentPath, indent=''):
        #Depth First Search
        currentNode=currentPath[-1]
        if currentNode.isTerminal:
            word=''.join([node.letter for node in currentPath])
            print indent+word
            indent+='  '
        for letter, node in sorted(currentNode.children.items()):
            self.output(currentPath[:]+[node], indent)
 
    def insert(self, word):
        current=self.root
        for letter in word:
            if letter not in current.children:
                current.children[letter]=Node(letter)
            current=current.children[letter]
        current.isTerminal=True
 
    def __contains__(self, word):
        current=self.root
        for letter in word:
            if letter not in current.children:
                return False
            current=current.children[letter]
        return current.isTerminal
 
    def getAllPrefixesOfWord(self, word):
        prefix=''
        prefixes=[]
        current=self.root
        for letter in word:
            if letter not in current.children:
                return prefixes
            current=current.children[letter]
            prefix+=letter
            if current.isTerminal:
                prefixes.append(prefix)
        return prefixes
http://www.hawstein.com/posts/20.7.html
上述代码将单词存放在哈希表中,以得到O(1)的查找时间。排序需要用O(nlogn)的时间, 判断某个单词是否可以由其它单词组成平均需要O(d)的时间(d为单词长度), 总共有n个单词,需要O(nd)的时间。所以时间复杂度为:O(nlogn + nd)。 n比较小时,时间复杂度可以认为是O(nd);n比较大时,时间复杂度可以认为是O(nlogn)。
Hash hash;

inline bool cmp(string s1, string s2){//按长度从大到小排
    return s2.length() < s1.length();
}

bool MakeOfWords(string word, int length){
    //cout<<"curr: "<<word<<endl;
    int len = word.length();
    //cout<<"len:"<<len<<endl;
    if(len == 0) return true;

    for(int i=1; i<=len; ++i){
        if(i == length) return false;//取到原始串,即自身
        string str = word.substr(0, i);
        //cout<<str<<endl;
        if(hash.find((char*)&str[0])){
            if(MakeOfWords(word.substr(i), length))
                return true;
        }
    }
    return false;
}

void PrintLongestWord(string word[], int n){
    for(int i=0; i<n; ++i)
        hash.insert((char*)&word[i][0]);
    sort(word, word+n, cmp);

    for(int i=0; i<n; ++i){
        if(MakeOfWords(word[i], word[i].length())){
            cout<<"Longest Word: "<<word[i]<<endl;
            return;
        }
    }
}
https://medium.com/@jessgreb01/longest-concatenated-word-algorithm-34934b864e3e

http://stackoverflow.com/questions/32984927/find-the-longest-word-made-of-other-words
Answering your question indirectly, I believe the following is an efficient way to solve this problem using tries.
Build a trie from all of the words in your string.
Sort the words so that the longest word comes first.
Now, for each word W, start at the top of the trie and begin following the word down the tree one letter at a time using letters from the word you are testing.
Each time a word ends, recursively re-enter the trie from the top making a note that you have "branched". If you run out of letters at the end of the word and have branched, you've found a compound word and, because the words were sorted, this is the longest compound word.
If the letters stop matching at any point, or you run out and are not at the end of the word, just back track to wherever it was that you branched and keep plugging along.
#!/usr/bin/env python3

#End of word symbol
_end = '_end_'

#Make a trie out of nested HashMap, UnorderedMap, dict structures
def MakeTrie(words):
  root = dict()
  for word in words:
    current_dict = root
    for letter in word:
      current_dict = current_dict.setdefault(letter, {})
    current_dict[_end] = _end
  return root

def LongestCompoundWord(original_trie, trie, word, level=0):
  first_letter = word[0]
  if not first_letter in trie:
    return False
  if len(word)==1 and _end in trie[first_letter]:
    return level>0
  if _end in trie[first_letter] and LongestCompoundWord(original_trie, original_trie, word[1:], level+1):
    return True
  return LongestCompoundWord(original_trie, trie[first_letter], word[1:], level)

#Words that were in your question
words = ['test','testing','tester','teste', 'testingtester', 'testingtestm', 'testtest','testingtest']

trie = MakeTrie(words)

#Sort words in order of decreasing length
words = sorted(words, key=lambda x: len(x), reverse=True)

for word in words:
  if LongestCompoundWord(trie,trie,word):
    print("Longest compound word was '{0:}'".format(word))
    break



No comments:

Post a Comment

Labels

GeeksforGeeks (959) Algorithm (811) LeetCode (635) to-do (597) Review (337) Classic Algorithm (334) Classic Interview (299) Dynamic Programming (263) Google Interview (232) LeetCode - Review (227) Tree (146) POJ (137) Difficult Algorithm (136) EPI (127) Different Solutions (118) Bit Algorithms (110) Cracking Coding Interview (110) Smart Algorithm (109) Math (91) HackerRank (85) Lintcode (83) Binary Search (73) Graph Algorithm (73) Greedy Algorithm (61) Interview Corner (61) List (58) Binary Tree (56) DFS (56) Algorithm Interview (53) Advanced Data Structure (52) Codility (52) ComProGuide (52) LeetCode - Extended (47) USACO (46) Geometry Algorithm (45) BFS (43) Data Structure (42) Mathematical Algorithm (42) ACM-ICPC (41) Interval (38) Jobdu (38) Recursive Algorithm (38) Stack (38) String Algorithm (38) Binary Search Tree (37) Knapsack (37) Codeforces (36) Introduction to Algorithms (36) Matrix (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) prismoskills (33) Segment Tree (32) Space Optimization (32) Trie (32) Union-Find (32) Backtracking (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Data Structure Design (29) Company-Zenefits (28) Microsoft 100 - July (28) to-do-must (28) Random (27) Sliding Window (26) GeeksQuiz (25) Logic Thinking (25) hihocoder (25) High Frequency (23) Palindrome (23) Algorithm Game (22) Company - LinkedIn (22) Graph (22) Queue (22) DFS + Review (21) Hash (21) TopCoder (21) Binary Indexed Trees (20) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Pre-Sort (20) Company-Facebook (19) UVA (19) Probabilities (18) Follow Up (17) Codercareer (16) Company-Uber (16) Game Theory (16) Heap (16) Shortest Path (16) String Search (16) Topological Sort (16) Tree Traversal (16) itint5 (16) Iterator (15) Merge Sort (15) O(N) (15) Difficult (14) Number (14) Number Theory (14) Post-Order Traverse (14) Priority Quieue (14) Amazon Interview (13) BST (13) Basic Algorithm (13) Bisection Method (13) Codechef (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) KMP (12) Long Increasing Sequence(LIS) (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Ordered Stack (11) Princeton (11) Tree DP (11) 挑战程序设计竞赛 (11) Binary Search - Bisection (10) Company - Microsoft (10) Company-Airbnb (10) Euclidean GCD (10) Facebook Hacker Cup (10) HackerRank Easy (10) Reverse Thinking (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) X Sum (10) Coin Change (9) Lintcode - Review (9) Mathblog (9) Max-Min Flow (9) Stack Overflow (9) Stock (9) Two Pointers (9) Book Notes (8) Bottom-Up (8) DP-Space Optimization (8) Divide and Conquer (8) Graph BFS (8) LeetCode - DP (8) LeetCode Hard (8) Prefix Sum (8) Prime (8) System Design (8) Tech-Queries (8) Use XOR (8) 穷竭搜索 (8) Algorithm Problem List (7) DFS+BFS (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Linked List (7) Longest Common Subsequence(LCS) (7) Math-Divisible (7) Miscs (7) O(1) Space (7) Probability DP (7) Radix Sort (7) Simulation (7) Suffix Tree (7) Xpost (7) n00tc0d3r (7) 蓝桥杯 (7) Bucket Sort (6) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Level Order Traversal (6) Manacher (6) Minimum Spanning Tree (6) One Pass (6) Programming Pearls (6) Quick Select (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Suffix Array (6) Threaded (6) Time Complexity (6) reddit (6) AI (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Crazyforcode (5) DFS+Cache (5) DP-Multiple Relation (5) DP-Print Solution (5) Dutch Flag (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Inversion (5) Java (5) Kadane - Extended (5) Kadane’s Algorithm (5) Matrix Chain Multiplication (5) Microsoft Interview (5) Morris Traversal (5) Pruning (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Traversal Once (5) TreeMap (5) jiuzhang (5) to-do-2 (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Anagram (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Company-Amazon (4) Consistent Hash (4) Convex Hull (4) Cycle (4) DP-Include vs Exclude (4) Dijkstra (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) Left and Right Array (4) MinMax (4) Multiple Data Structures (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Pre-Sum (4) Probability (4) Programcreek (4) Quick Sort (4) Spell Checker (4) Stock Maximize (4) Subsets (4) Sudoku (4) Sweep Line (4) Symbol Table (4) TreeSet (4) Triangle (4) Water Jug (4) Word Ladder (4) algnotes (4) fgdsb (4) 最大化最小值 (4) A Star (3) Abbreviation (3) Algorithm - Brain Teaser (3) Algorithm Design (3) Anagrams (3) B Tree (3) Big Data Algorithm (3) Binary Search - Smart (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Edit Distance (3) Expression (3) Finite Automata (3) Forward && Backward Scan (3) Github (3) GoLang (3) Include vs Exclude (3) Joseph (3) Jump Game (3) Knapsack-多重背包 (3) LeetCode - Bit (3) LeetCode - TODO (3) Linked List Merge Sort (3) LogN (3) Maze (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Stack - Smart (3) State Machine (3) Streaming Algorithm (3) Subset Sum (3) Subtree (3) Transform Tree (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Search (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binomial Coefficient (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) GoHired (2) Graham Scan (2) Graph - Bipartite (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Knuth Shuffle (2) LeetCode - Recursive (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) MST (2) MST-Kruskal (2) Master Theorem (2) Math-Remainder Queue (2) Matrix Power (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Palindromic (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) Shuffle (2) Sieve of Eratosthenes (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Stream (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - How To (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Snapchat (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Easy (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Kosaraju’s algorithm (1) Kruskal (1) Kruskal MST (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode Diffcult (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Median (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Successor (1) Offline Algorithm (1) PAT (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) Probabilistic Data Structure (1) Proof (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Regular Expression (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie + DFS (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Wiggle Sort (1) Wikipedia (1) Yahoo Interview (1) ZOJ (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts