Friday, May 13, 2016

The Two Water Jug Puzzle


Related: Uva 571 Jugs ()
http://www.geeksforgeeks.org/two-water-jug-puzzle/
You are at the side of a river. You are given a m litre jug and a n litre jug where 0 < m < n. Both the jugs are initially empty. The jugs don’t have markings to allow measuring smaller quantities. You have to use the jugs to measure d litres of water where d < n. Determine the minimum no of operations to be performed to obtain d litres of water in one of jug.
The operations you can perform are:
  1. Empty a Jug
  2. Fill a Jug
  3. Pour water from one jug to the other until one of the jugs is either empty or full.
There are several ways of solving this problem including BFS and DP. In this article an arithmetic approach to solve the problem is discussed. The problem can be modeled by means of Diophantine equation of the form mx + ny = d which is solvable if and only if gcd(m, n) divides d. Also, the solution x,y for which equation is satisfied can be given using the Extended Euclid algorithm for GCD.
For example, if we have a jug J1 of 5 litre (n = 5) and another jug J2 of 3 litre (m = 3) and we have to measure 1 litre of water using them. The associated equation will be 5n + 3m = 1. First of all this problem can be solved since gcd(3,5) = 1 which divides 1 (See this for detailed explanation). Using the Extended Euclid algorithm, we get values of n and m for which the equation is satisfied which are n = 2 and m = -3. These values of n, m also have some meaning like here n = 2 and m = -3 means that we have to fill J1 twice and empty J2 thrice.
Now to find the minimum no of operations to be performed we have to decide which jug should be filled first. Depending upon which jug is chosen to be filled and which to be emptied we have two different solutions and the minimum among them would be our answer.

Solution 1 (Always pour from m litre jug into n litre jug)
  1. Fill the m litre jug and empty it into n litre jug.
  2. Whenever the m litre jug becomes empty fill it.
  3. Whenever the n litre jug becomes full empty it.
  4. Repeat steps 1,2,3 till either n litre jug or the m litre jug contains d litres of water.
Each of steps 1, 2 and 3 are counted as one operation that we perform. Let us say algorithm 1 achieves the task in C1 no of operations.
Solution 2 (Always pour from n litre jug into m litre jug)
  1. Fill the n litre jug and empty it into m litre jug.
  2. Whenever the n litre jug becomes empty fill it.
  3. Whenever the m litre jug becomes full empty it.
  4. Repeat steps 1, 2 and 3 till either n litre jug or the m litre jug contains d litres of water.
Let us say solution 2 achieves the task in C2 no of operations.
Now our final solution will be minimum of C1 and C2.
Now we illustrate how both of the solutions work. Suppose there are a 3 litre jug and a 5 litre jug to measure 4 litres water so m = 3,n = 5 and d = 4. The associated Diophantine equation will be 3m + 5n = 4. We us pair (x, y) to represent amounts of water inside 3 litre jug and 5 litre jug respectively in each pouring step.
Using Solution 1, successive pouring steps are:
(0,0)->(3,0)->(0,3)->(3,3)->(1,5)->(1,0)->(0,1)->(3,1)->(0,4)
Hence the no of operations you need to perform are 8.
Using Solution 2, successive pouring steps are:
(0,0)->(0,5)->(3,2)->(0,2)->(2,0)->(2,5)->(3,4)
Hence the no of operations you need to perform are 6.
Therefore we would use solution 2 to measure 4 liters of water in 6 operations or moves.
int gcd(int a, int b)
{
    if (b==0)
       return a;
    return gcd(b, a%b);
}
 
/* fromCap -- Capacity of jug from which
              water is poured
   toCap   -- Capacity of jug to which
              water is poured
   d       -- Amount to be measured */
int pour(int fromCap, int toCap, int d)
{
    // Initialize current amount of water
    // in source and destination jugs
    int from = fromCap;
    int to = 0;
 
    // Initialize count of steps required
    int step = 1; // Needed to fill "from" Jug
 
    // Break the loop when either of the two
    // jugs has d litre water
    while (from != d && to != d)
    {
        // Find the maximum amount that can be
        // poured
        int temp = min(from, toCap - to);
 
        // Pour "temp" litres from "from" to "to"
        to   += temp;
        from -= temp;
 
        // Increment count of steps
        step++;
 
        if (from == d || to == d)
            break;
 
        // If first jug becomes empty, fill it
        if (from == 0)
        {
            from = fromCap;
            step++;
        }
 
        // If second jug becomes full, empty it
        if (to == toCap)
        {
            to = 0;
            step++;
        }
    }
    return step;
}
 
// Returns count of minimum steps needed to
// measure d litre
int minSteps(int m, int n, int d)
{
    // To make sure that m is smaller than n
    if (m > n)
        swap(m, n);
 
    // For d > n we cant measure the water
    // using the jugs
    if (d > n)
        return -1;
 
    // If gcd of n and m does not divide d
    // then solution is not possible
    if ((d % gcd(n,m)) != 0)
        return -1;
 
    // Return minimum two cases:
    // a) Water of n litre jug is poured into
    //    m litre jug
    // b) Vice versa of "a"
    return min(pour(n,m,d),   // n to m
               pour(m,n,d));  // m to n
}
http://www.geeksforgeeks.org/measure-1-litre-from-two-vessels-infinite-water-supply/
There are two vessels of capacities ‘a’ and ‘b’ respectively. We have infinite water supply. Give an efficient algorithm to make exactly 1 litre of water in one of the vessels. You can throw all the water from any vessel any point of time. Assume that ‘a’ and ‘b’ are Coprimes.
Following are the steps:
Let V1 be the vessel of capacity ‘a’ and V2 be the vessel of capacity ‘b’ and ‘a’ is smaller than ‘b’.
1) Do following while the amount of water in V1 is not 1.
….a) If V1 is empty, then completely fill V1
….b) Transfer water from V1 to V2. If V2 becomes full, then keep the remaining water in V1 and empty V2
2) V1 will have 1 litre after termination of loop in step 1. Return.
/* Sample run of the Algo for V1 with capacity 3 and V2 with capacity 7
1. Fill V1:                               V1 = 3, V2 = 0
2. Transfer from V1 to V2, and fill V1:   V1 = 3, V2 = 3
2. Transfer from V1 to V2, and fill V1:   V1 = 3, V2 = 6
3. Transfer from V1 to V2, and empty V2:  V1 = 2, V2 = 0
4. Transfer from V1 to V2, and fill V1:   V1 = 3, V2 = 2
5. Transfer from V1 to V2, and fill V1:   V1 = 3, V2 = 5
6. Transfer from V1 to V2, and empty V2:  V1 = 1, V2 = 0
7. Stop as V1 now contains 1 litre.
Note that V2 was made empty in steps 3 and 6 because it became full */

To prove that the algorithm works, we need to proof that after certain number of iterations in the while loop, we will get 1 litre in V1.
Let ‘a’ be the capacity of vessel V1 and ‘b’ be the capacity of V2. Since we repeatedly transfer water from V1 to V2 until V2 becomes full, we will have ‘a – b (mod a)’ water in V1 when V2 becomes full first time . Once V2 becomes full, it is emptied. We will have ‘a – 2b (mod a)’ water in V1 when V2 is full second time. We repeat the above steps, and get ‘a – nb (mod a)’ water in V1 after the vessel V2 is filled and emptied ‘n’ times. We need to prove that the value of ‘a – nb (mod a)’ will be 1 for a finite integer ‘n’. To prove this, let us consider the following property of coprime numbers.
For any two coprime integers ‘a’ and ‘b’, the integer ‘b’ has a multiplicative inverse modulo ‘a’. In other words, there exists an integer ‘y’ such that ‘b*y ≡ 1(mod)a’ (See 3rd point here). After ‘(a – 1)*y’ iterations, we will have ‘a – [(a-1)*y*b (mod a)]’ water in V1, the value of this expression is ‘a – [(a – 1) * 1] mod a’ which is 1. So the algorithm converges and we get 1 litre in V1.
void Vessel:: makeOneLitre(Vessel &V2)
{
    // solution exists iff a and b are co-prime
    if (gcd(capacity, V2.capacity) != 1)
        return;
 
    while (current != 1)
    {
        // fill A (smaller vessel)
        if (current == 0)
            current = capacity;
 
        cout << "Vessel 1: " << current << "   Vessel 2: "
             << V2.current << endl;
 
        // Transfer water from V1 to V2 and reduce current of V1 by
        //  the amount equal to transferred water
        current = current - V2.transfer(current);
    }
 
    // Finally, there will be 1 litre in vessel 1
    cout << "Vessel 1: " << current << "   Vessel 2: "
         << V2.current << endl;
}
 
// Fills vessel with given amount and returns the amount of water
// transferred to it. If the vessel becomes full, then the vessel
// is made empty
int Vessel::transfer(int amount)
{
    // If the vessel can accommodate the given amount
    if (current + amount < capacity)
    {
        current += amount;
        return amount;
    }
 
    // If the vessel cannot accommodate the given amount, then
    // store the amount of water transferred
    int transferred = capacity - current;
 
    // Since the vessel becomes full, make the vessel
    // empty so that it can be filled again
    current = 0;
 
    return transferred;
}
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
In modular arithmetic, the modular multiplicative inverse of an integer a modulo m is an integer x such that
a\,x \equiv 1 \pmod{m}.


The multiplicative inverse of a modulo m exists if and only if a and m are coprime (i.e., if gcd(am) = 1).[1] If the modular multiplicative inverse of a modulo m exists, the operation of division by amodulo m can be defined as multiplying by the inverse of a, which is in essence the same concept as division in the field of reals.
Suppose we wish to find modular multiplicative inverse x of 3 modulo 11.
x \equiv 3^{-1} \pmod{11}
This is the same as finding x such that
3x \equiv 1 \pmod{11}
Working in \mathbb{Z}_{11} we find one value of x that satisfies this congruence is 4 because
3\cdot 4 = 12 \equiv 1 \pmod{11}
A number of conditions are individually equivalent to a and b being coprime:


No comments:

Post a Comment

Labels

GeeksforGeeks (959) Algorithm (811) LeetCode (639) to-do (598) Review (343) Classic Algorithm (334) Classic Interview (299) Dynamic Programming (263) Google Interview (233) LeetCode - Review (229) Tree (146) POJ (137) Difficult Algorithm (136) EPI (127) Different Solutions (118) Bit Algorithms (110) Cracking Coding Interview (110) Smart Algorithm (109) Math (91) HackerRank (85) Lintcode (83) Binary Search (73) Graph Algorithm (73) Greedy Algorithm (61) Interview Corner (61) List (58) Binary Tree (56) DFS (56) Algorithm Interview (53) Advanced Data Structure (52) Codility (52) ComProGuide (52) LeetCode - Extended (47) USACO (46) Geometry Algorithm (45) BFS (43) Data Structure (42) Mathematical Algorithm (42) ACM-ICPC (41) Interval (38) Jobdu (38) Recursive Algorithm (38) Stack (38) String Algorithm (38) Binary Search Tree (37) Knapsack (37) Codeforces (36) Introduction to Algorithms (36) Matrix (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) Trie (33) prismoskills (33) Segment Tree (32) Space Optimization (32) Union-Find (32) Backtracking (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Data Structure Design (29) Company-Zenefits (28) Microsoft 100 - July (28) to-do-must (28) Random (27) Sliding Window (26) GeeksQuiz (25) Logic Thinking (25) hihocoder (25) High Frequency (23) Palindrome (23) Algorithm Game (22) Company - LinkedIn (22) Graph (22) Queue (22) DFS + Review (21) Hash (21) TopCoder (21) Binary Indexed Trees (20) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Pre-Sort (20) Company-Facebook (19) UVA (19) Probabilities (18) Follow Up (17) Codercareer (16) Company-Uber (16) Game Theory (16) Heap (16) Shortest Path (16) String Search (16) Topological Sort (16) Tree Traversal (16) itint5 (16) Iterator (15) Merge Sort (15) O(N) (15) Bisection Method (14) Difficult (14) Number (14) Number Theory (14) Post-Order Traverse (14) Priority Quieue (14) Amazon Interview (13) BST (13) Basic Algorithm (13) Codechef (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) KMP (12) Long Increasing Sequence(LIS) (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Ordered Stack (11) Princeton (11) Tree DP (11) 挑战程序设计竞赛 (11) Binary Search - Bisection (10) Company - Microsoft (10) Company-Airbnb (10) Euclidean GCD (10) Facebook Hacker Cup (10) HackerRank Easy (10) Reverse Thinking (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) X Sum (10) Coin Change (9) Lintcode - Review (9) Mathblog (9) Max-Min Flow (9) Stack Overflow (9) Stock (9) Two Pointers (9) Book Notes (8) Bottom-Up (8) DP-Space Optimization (8) Divide and Conquer (8) Graph BFS (8) LeetCode - DP (8) LeetCode Hard (8) Prefix Sum (8) Prime (8) System Design (8) Tech-Queries (8) Time Complexity (8) Use XOR (8) 穷竭搜索 (8) Algorithm Problem List (7) DFS+BFS (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Linked List (7) Longest Common Subsequence(LCS) (7) Math-Divisible (7) Miscs (7) O(1) Space (7) Probability DP (7) Radix Sort (7) Simulation (7) Suffix Tree (7) Xpost (7) n00tc0d3r (7) 蓝桥杯 (7) Bucket Sort (6) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Level Order Traversal (6) Manacher (6) Minimum Spanning Tree (6) One Pass (6) Programming Pearls (6) Quick Select (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Suffix Array (6) Threaded (6) reddit (6) AI (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Crazyforcode (5) DFS+Cache (5) DP-Multiple Relation (5) DP-Print Solution (5) Dutch Flag (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Inversion (5) Java (5) Kadane - Extended (5) Kadane’s Algorithm (5) Matrix Chain Multiplication (5) Microsoft Interview (5) Morris Traversal (5) Pruning (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sweep Line (5) Traversal Once (5) TreeMap (5) jiuzhang (5) to-do-2 (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Anagram (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Company-Amazon (4) Consistent Hash (4) Convex Hull (4) Cycle (4) DP-Include vs Exclude (4) Dijkstra (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) Left and Right Array (4) MinMax (4) Multiple Data Structures (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Pre-Sum (4) Probability (4) Programcreek (4) Quick Sort (4) Spell Checker (4) Stock Maximize (4) Subsets (4) Sudoku (4) Symbol Table (4) TreeSet (4) Triangle (4) Water Jug (4) Word Ladder (4) algnotes (4) fgdsb (4) 最大化最小值 (4) A Star (3) Abbreviation (3) Algorithm - Brain Teaser (3) Algorithm Design (3) Anagrams (3) B Tree (3) Big Data Algorithm (3) Binary Search - Smart (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Edit Distance (3) Expression (3) Finite Automata (3) Forward && Backward Scan (3) Github (3) GoLang (3) Include vs Exclude (3) Joseph (3) Jump Game (3) Knapsack-多重背包 (3) LeetCode - Bit (3) LeetCode - TODO (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Maze (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Stack - Smart (3) State Machine (3) Streaming Algorithm (3) Subset Sum (3) Subtree (3) Transform Tree (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Search (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binomial Coefficient (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) GoHired (2) Graham Scan (2) Graph - Bipartite (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Knuth Shuffle (2) LeetCode - Recursive (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) MST (2) MST-Kruskal (2) Math-Remainder Queue (2) Matrix Power (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Palindromic (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) Shuffle (2) Sieve of Eratosthenes (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Stream (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - How To (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Snapchat (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Easy (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Kosaraju’s algorithm (1) Kruskal (1) Kruskal MST (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode Diffcult (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Median (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Successor (1) Offline Algorithm (1) PAT (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) Probabilistic Data Structure (1) Proof (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Regular Expression (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie + DFS (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Wiggle Sort (1) Wikipedia (1) Yahoo Interview (1) ZOJ (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts