## Sunday, May 22, 2016

### LeetCode 349|350 - Intersection of Two Arrays I/II

LeetCode 349 - Intersection of Two Arrays

Given two arrays, write a function to compute their intersection.
Example:
Given nums1 = `[1, 2, 2, 1]`, nums2 = `[2, 2]`, return `[2]`.
Note:
• Each element in the result must be unique.
• The result can be in any order.
Use two hash sets
Time complexity: O(n)
``````    public int[] intersection(int[] nums1, int[] nums2) {
Set<Integer> set = new HashSet<>();
Set<Integer> intersect = new HashSet<>();
for (int i = 0; i < nums1.length; i++) {
}
for (int i = 0; i < nums2.length; i++) {
if (set.contains(nums2[i])) {
}
}
int[] result = new int[intersect.size()];
int i = 0;
for (Integer num : intersect) {
result[i++] = num;
}
return result;
}
``````
Sort both arrays, use two pointers
Time complexity: O(nlogn)
``````    public int[] intersection(int[] nums1, int[] nums2) {
Set<Integer> set = new HashSet<>();
Arrays.sort(nums1);
Arrays.sort(nums2);
int i = 0;
int j = 0;
while (i < nums1.length && j < nums2.length) {
if (nums1[i] < nums2[j]) {
i++;
} else if (nums1[i] > nums2[j]) {
j++;
} else {
i++;
j++;
}
}
int[] result = new int[set.size()];
int k = 0;
for (Integer num : set) {
result[k++] = num;
}
return result;
}
``````
Binary search
Time complexity: O(nlogn)
``````    public int[] intersection(int[] nums1, int[] nums2) {
Set<Integer> set = new HashSet<>();
Arrays.sort(nums2);
for (Integer num : nums1) {
if (binarySearch(nums2, num)) {
}
}
int i = 0;
int[] result = new int[set.size()];
for (Integer num : set) {
result[i++] = num;
}
return result;
}

public boolean binarySearch(int[] nums, int target) {
int low = 0;
int high = nums.length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (nums[mid] == target) {
return true;
}
if (nums[mid] > target) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return false;
}``````
Two-line java 8 solution using `Stream`
``````Set<Integer> set = Arrays.stream(nums2).boxed().collect(Collectors.toSet());
return Arrays.stream(nums1).distinct().filter(e-> set.contains(e)).toArray();``````
https://leetcode.com/problems/intersection-of-two-arrays-ii/
Given two arrays, write a function to compute their intersection.
Example:
Given nums1 = `[1, 2, 2, 1]`nums2 = `[2, 2]`, return `[2, 2]`.
Note:
• Each element in the result should appear as many times as it shows in both arrays.
• The result can be in any order.
• What if the given array is already sorted? How would you optimize your algorithm?
• What if nums1's size is small compared to num2's size? Which algorithm is better?
• What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
https://discuss.leetcode.com/topic/45992/solution-to-3rd-follow-up-question
What if elements of nums2 are stored on disk, and the memory is
limited such that you cannot load all elements into the memory at
once?
• If only nums2 cannot fit in memory, put all elements of nums1 into a HashMap, read chunks of array that fit into the memory, and record the intersections.
• If both nums1 and nums2 are so huge that neither fit into the memory, sort them individually (external sort), then read 2 elements from each array at a time in memory, record intersections.

• 如果数组已经排好序，怎样优化你的算法？
• 如果nums1的长度＜nums2的长度？哪一种算法更好？
• 如果nums2的元素存储在磁盘上，并且内存大小有限，不足以将其一次性的加载到内存中。此时应当怎样做？
• X. 解法I 排序（Sort）+双指针（Two Pointers）
http://vegetablefinn.github.io/2016/05/21/350-Intersection-of-Two-Arrays-II/
If the arrays are sorted, then we can use two points.
```    public int[] intersect(int[] nums1, int[] nums2) {
//先排序
Arrays.sort(nums1);
Arrays.sort(nums2);
//确定输出数组
List<Integer> resultList = new ArrayList<Integer>();
continue;
continue;
continue;
}
}
int result[] = new int[resultList.size()];
for (int i=0; i < result.length; i++)
{
result[i] = resultList.get(i).intValue();
}
return result;
}```

解法II Counter计数
该解法不需要将nums2一次性加载到内存中
def intersect(self, nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: List[int] """ if len(nums1) > len(nums2): nums1, nums2 = nums2, nums1 c = collections.Counter(nums1) ans = [] for x in nums2: if c[x] > 0: ans += x, c[x] -= 1 return ans

Map<Integer, Long> map = Arrays.stream(nums2).boxed().collect
(Collectors.groupingBy(e->e, Collectors.counting())); return Arrays.stream(nums1).filter(e ->{ if(!map.containsKey(e)) return false; map.put(e, map.get(e) - 1); if(map.get(e) == 0) map.remove(e); return true; }).toArray();

[JAVA] What's the best way you think to convert List<Integer> to a normal int array?
``````int[] array = list.stream().mapToInt(i->i).toArray();
```

```
``````list.stream().mapToInt(Integer :: intValue).toArray()
```

```
https://leetcode.com/discuss/103969/solution-to-3rd-follow-up-question
What if elements of nums2 are stored on disk, and the memory is
limited such that you cannot load all elements into the memory at
once?
• If only nums2 cannot fit in memory, put all elements of nums1 into a HashMap, read chunks of array that fit into the memory, and record the intersections.
• If both nums1 and nums2 are so huge that neither fit into the memory, sort them individually (external sort), then read 2 elements from each array at a time in memory, record intersections.
I think the second part of the solution is impractical, if you read 2 elements at a time, this procedure will take forever. In principle, we want minimize the number of disk access during the run-time.
An improvement can be sort them using external sort, read (let's say) 2G of each into memory and then using the 2 pointer technique, then read 2G more from the array that has been exhausted. Repeat this until no more data to read from disk.
But I am not sure this solution is good enough for an interview setting. Maybe the interviewer is expecting some solution using Map-Reduce paradigm.
http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN250_Weiss/L17-ExternalSortEX2.htm
http://massivealgorithms.blogspot.com/2014/07/exceptional-code-external-sorting-for.html
http://buttercola.blogspot.com/2016/06/leetcode-intersection-of-two-arrays-ii.html

• What if the given array is already sorted? How would you optimize your algorithm?
• Solution 1, i.e., sorting,  would be better since it does not need extra memory.
• What if nums1's size is small compared to num2's size? Which algorithm is better?
• If two arrays are sorted, we could use binary search, i.e., for each element in the shorter array, search in the longer one. So the overall time complexity is O(nlogm), where n is the length of the shorter array, and m is the length of the longer array. Note that this is better than Solution 1 since the time complexity is O(n + m) in the worst case.
• What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
• If the two arrays have relatively the same length, we can use external sort to sort out the two arrays in the disk. Then load chunks of each array into the memory and compare, by using the method 1.
• If one array is too short while the other is long, in this case, if memory is limited and nums2 is stored in disk, partition it and send portions of nums2 piece by piece. keep a pointer for nums1 indicating the current position, and it should be working fine~
• Another method is, store the larger array into disk, and for each element in the shorter array, use "Exponential Search" and search in the longer array.
https://helloyuantechblog.wordpress.com/2016/06/20/leetcode-350-intersection-of-two-arrays-ii-easy/
`    ``vector<``int``> intersect(vector<``int``>& nums1, vector<``int``>& nums2) {`
`        //``sort(nums1.begin(), nums1.end()); not needed`
`        ``sort(nums2.begin(), nums2.end());`
`        ``vector<``int``> result;`
`        ``int` `len1 = nums1.size(), len2 = nums2.size();`
`        ``for``(``int` `i = 0; i < nums1.size(); i++) { ``if` `(i > 0 && nums1[i] == nums1[i-1]) {`
`                ``continue``;`
`            ``}`
`            ``int` `j = binarySearch(nums2, nums1[i]);`
`            ``if` `(j != -1) {`
`                ``result.push_back(nums1[i]);`
`                ``while``(i + 1 < len1 && nums1[i+1] == nums1[i] && j + 1 < len2 && nums2[j+1] == nums2[j]) {`
`                    ``result.push_back(nums1[i]);`
`                    ``i++; j++;`
`                ``}`
`            ``}`
`        ``}`
`        ``return` `result;`
`    ``}`
`    ``int` `binarySearch(vector<``int``>& nums, ``int` `target) {`
`        ``if` `(nums.empty()) {`
`            ``return` `-1;`
`        ``}`
`        ``int` `start = 0, end = nums.size()-1, mid;`
`        ``while``(start + 1 < end) {`
`            ``mid = start + (end - start) / 2;`
`            ``if` `(nums[mid] < target) { `
`                ``start = mid + 1; `
`            ``} ``else` `{`
`                ``end = mid;`
`            ``} `
`        ``}`
`        ``if` `(nums[start] == target) {`
`            ``return` `start;`
`        ``}`
`        ``if` `(nums[end] == target) {`
`            ``return` `end;`
`        ``}`
`        ``return` `-1;`
`    ``}`
https://discuss.leetcode.com/topic/49329/all-the-follow-up-solution
1.What if the given array is already sorted? How would you optimize your algorithm?
``````class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
vector<int> res;
if(nums1.empty() || nums2.empty())
return res;
for(int i=0,j=0; i<nums1.size() && j<nums2.size(); ) {
if(nums1[i] == nums2[j]) {
res.push_back(nums2[j]);
++j;
++i;
}else if(nums1[i] < nums2[j]) {
++i;
}else if(nums1[i] > nums2[j]) {
++j;
}
}
return res;
}
};
``````
2.What if nums1's size is small compared to nums2's size? Which algorithm is better?
``````class Solution {
public:
vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
unordered_map<int, int> mymap;
vector<int> res;
for(auto it : nums1) {
mymap[it]++;
}
for(auto it : nums2) {
if(--mymap[it] >= 0) {
res.push_back(it);
}
}
return res;

}
};``````
http://wxx5433.github.io/common-elements.html
Since the question says is two sorted sets, it means there are no duplicate elements. Otherwise, we need to deal with it very carefully. We may discuss with the interviewer what we should return in the following case:
```    A = {5, 5, 6}
B = {5, 5, 7}
```
Should we return {5, 5} or just {5}?

## Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) Interview Corner (61) Stack (60) List (58) BFS (54) Codility (54) ComProGuide (52) USACO (46) Trie (45) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Jobdu (39) LeetCode Hard (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Must Known (36) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) DFS + Review (21) Brain Teaser (20) CareerCup (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Majority (13) mitbbs (13) Combination (12) Modify Tree (12) Reconstruct Tree (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) DFS+Cache (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stock (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) DFS+BFS (8) Linked List (8) Prime (8) Suffix Tree (8) Tech-Queries (8) 穷竭搜索 (8) Expression (7) Game Nim (7) Graph BFS (7) Hackerearth (7) Inversion (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) DFS+DP (6) DP - Tree (6) Dijkstra (6) Dutch Flag (6) How To (6) Manacher (6) One Pass (6) Pruning (6) Rabin-Karp (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Big Data (5) Brute Force (5) Code Kata (5) Coding (5) Convex Hull (5) Crazyforcode (5) Cycle (5) Find Rule (5) Graph Cycle (5) Immutability (5) Java (5) Maze (5) Pre-Sum (5) Quadtrees (5) Quora (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Chess Game (4) Distributed (4) Flood fill (4) Histogram (4) MST (4) MinMax (4) N Queens (4) Probability (4) Programcreek (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) B Tree (3) Coins (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Github (3) GoLang (3) Joseph (3) Jump Game (3) K (3) LogN (3) Minesweeper (3) NP Hard (3) O(N) Hard (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Subtree (3) Trie + DFS (3) Word Ladder (3) bookkeeping (3) codebytes (3) Array Merge (2) BOJ (2) Bellman Ford (2) Bit Counting (2) Bit Mask (2) Bloom Filter (2) Clock (2) Codesays (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-i-k-j (2) DP-树形 (2) Factor (2) GoHired (2) Graham Scan (2) Huffman Tree (2) Invariant (2) Islands (2) Lucene-Solr (2) Matrix Power (2) Median (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Robot (2) Rosettacode (2) Search (2) SimHash (2) Skyline (2) Summary (2) TV (2) Tile (2) Tree Sum (2) Word Break (2) Word Graph (2) Word Trie (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Big Integer (1) Big Number (1) Binary (1) Bipartite (1) BitMap (1) BitMap index (1) BitSet (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Chinese (1) Cloest (1) Clone (1) Code Quality (1) Company-Epic (1) Company-Yelp (1) Concurrency (1) Custom Sort (1) DFS-Matrix (1) DP-Difficult (1) DP-Graph (1) DP-MaxMin (1) Database (1) Diagonal (1) Domino (1) Dr Dobb's (1) Duplicate (1) FST (1) Fraction (1) Funny (1) Game (1) Generation (1) GeoHash (1) Google APAC (1) Gray Code (1) HOJ (1) Hanoi (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Interview (1) Isomorphic (1) JDK8 (1) Knight (1) Kruskal (1) Kth Element (1) Linkedin (1) Local MinMax (1) Matrix BFS (1) Matrix Graph (1) Matrix+DP (1) MinHash (1) MinMax Heap (1) Monto Carlo (1) Multiple DFS (1) Next Element (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Persistent (1) Power Set (1) PreProcess (1) Python (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Region (1) Resources (1) Robin (1) Selection (1) Similarity (1) Square (1) String DP (1) SubMatrix (1) Subsequence (1) TSP (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tree Rotate (1) Trie vs Hash (1) Triplet (1) Two Stacks (1) UyHiP (1) Valid Tree (1) Vector (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) codevs (1) cos126 (1) javabeat (1) jum (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)