Saturday, January 30, 2016

Find Missing Number


Find Missing Number - Algorithms and Problem SolvingAlgorithms and Problem Solving
1. Given a set of positive numbers less than equal to N, where one number is missing. Find the missing number efficiently.
2. Given a set of positive numbers less than equal to N, where two numbers are missing. Find the missing numbers efficiently.
3. Given a sequence of positive numbers less than equal to N, where one number is repeated and another is missing. Find the repeated and the missing numbers efficiently.
4. Given a sequence of integers (positive and negative). Find the first missing positive number in the sequence.
Solutions should not use no more than O(n) time and constant space.
For example,
1. A=[2,1,5,8,6,7,3,10,9] and N=10 then, 4 is missing.
2. A=[2,1,5,8,6,7,3,9] and N=10 then, 4 and 10 are missing.
3. A=[2,1,5,8,3,6,7,3,10] and N=10 then, 3 is repeating and 9 is missing.
2. A=[1,2,0] then first missing positive is 3, A=[3,4,-1,1], the first missing positive is 2.
Single Number Missing
A trivial approach would be to sort the array and loop through zero to N-1 to check whether index i contains number i+1. This will take constant space but takes O(nlgn) time. We can do a counting sort to sort the array but still it’ll take in O(n+k) time and O(k) space. But we need to do it O(n) time and constant space, how?
public int missingNumber(int[] nums) {
    int n = nums.length;
    int expectedSum = n*(n+1)/2;
    
    int actualSum = 0;
    for(int i=0; i<n; i++){
        actualSum+= nums[i];
    }
    
    return (expectedSum-actualSum);
}
Two Missing Numbers
We can solve it using math same as above. Let’s say p and q are the missing numbers among 1 to N. Then summation of given input numbers,
S = N*(N+1)/2 - p -q
=>p+q = N*(N+1)/2 -S
Also, we know that multiplication of numbers 1 to N is N! –
P = N!/pq
=>pq = N!/P
Then we can solve these two equations to find the missing number p and q. However this approach has a serious limitation because the product of a large amount of numbers can overflow the buffer. We could have used long but still multiplication operation is not cheap.
Can we avoid multiplication? As the numbers are positive and between the range [1,N] we could use the element of the array as index into the array to mark them as exists. Then the positions for missing element will be unmarked. But it’ll change the array itself. How do we make sure that marking one position we are not losing information at the position we are marking. For example, A=[2,1,5,8,6,7,3,9] then if we mark A[A[0]-1] i.e. A[1] with special value, lets say 0 marking 2 as not missing, then A becomes A’=[2,0,5,8,6,7,3,9], then we are losing information and A[A[1]-1] i.e. A[0] will never get marked to inform us that 1 is not missing.
We can actually overcome the overwriting issue by just negating the number at index A[abs(A[i])-1] for each i. So, we are not losing value but just changing the sign and indexing based on absolute value. After we mark for all the numbers we can now have a second pass on the array and check for unmarked i.e. positive elements. At the same time we can revert the negated elements back to positive thus getting back to original array. Below is the implementation of this idea.
public static void find2Missing(int[] a, int n){
 for(int i = 0; i < a.length; i++){
  if(a[Math.abs(a[i])-1] > 0){
   a[Math.abs(a[i])-1]  = -a[Math.abs(a[i])-1];
  }
 }
 
 for(int i = 0; i < a.length; i++){
  if(a[i] > 0){
   System.out.println("missing: "+i+1);
  }
  else{
   a[i] = -a[i];
  }
 }
}
The above solution has a limitation that we assume the input array is not immutable. What if we can’t update the input array (i.e.e immutable) and still we need to find the missing values in O(n) time and constant space?
//O(n) time, O(1) space
public static void findMissing2(int a[], int n){
 int mask = 0;
 
 //O(n)
 for(int i = 1; i<=n; i++){
  mask ^= i;
 }
 
 //O(n)
 for(int i = 0; i < a.length; i++){
  mask ^= a[i];
 }
 
 //get the right most set bit
 mask &= ~(mask-1);
 int mis1=0, mis2=0;
 for(int i = 0; i<a.length; i++){
  if((a[i]&mask) == mask){
   mis1 ^= a[i];
  }
  else{
   mis2 ^= a[i];
  }
 }
 
 for(int i = 1; i<=n; i++){
  if((i&mask) == mask){
   mis1 ^= i;
  }
  else{
   mis2 ^= i;
  }
 }
 
 System.out.println("missing numbers : "+mis1+", "+mis2);
}
 One Missing, One Repeated
What if we have one single number getting repeated twice and one missing? Note that, missing one element and repeating one element is equivalent phenomena with respect to xor arithmetic. Because during xor1 these repeating element will nullify each other and made the element missing in the xor. That is we can use the same procedure described above to find one missing and one repeated element.
First missing Positive
For example, A=[1,2,0] then first missing positive is 3, A=[3,6,4,-1,1], the first missing positive is 2. Can we use some of the above techniques we discussed? Note that, there might be more than one missing numbers as well as negative numbers and zeros. If all numbers were positive then we could have used the 2nd method for finding two missing number where we used the element as index to negate the value for marking them as non-missing. However, in this problem we may have non-positive numbers i.e. zeros and negatives. So, we can’t simply apply the algorithm. But if we think carefully then we notice that we actually don’t have to care about zeros and negative numbers because we only care about smallest positive numbers. That is if we can put aside the non-positive numbers and only considers the positives then we can simply apply the “element as index to mark non-missing by negating the value” method to find the missing positives.
How do we put aside non-positive elements? We can actually do a partition as we do in quicksort to create a partition where all positive elements will be put on left of the partition and all zeros and negatives on the right hand. If we find such a partition index q, then A[0..q-1] will contain all positives. Now, we just have to scan the positive partition of array the i.e. from 0 to q-1 and mark A[abs(A[i])-1] as marked i.e negating the value. After marking phase we sweep through the partition again to find first index i where we find a positive element. Then i+1 is the smallest i.e. first missing positive. If we do not find such an index then there is no missing numbers between 1 to q (why?). In that case we return next positive number q+1 (why?). Below is the implementation of this algorithm which assumes we can update the original array. It runs in O(n) time and constant space.
public static int firstMissingPositive(int[] nums) {
    if(nums.length == 0){
        return 1;
    }
    
    int p = 0;
    int r = nums.length - 1;
    int q = p-1;

    for(int j = 0; j<=r; j++){
        if(nums[j] > 0){
            swap(nums, ++q, j);
        }
    }
    
    q++;
    for(int i = 0; i < q; i++){
     int index = Math.abs(nums[i])-1;
     if(index<q){
      nums[index] = -Math.abs(nums[index]);
     }
    }
    
    for(int i = 0; i < q; i++){
        if(nums[i] > 0){
            return i+1;
        }
    }
    
    return q+1;
}

Read full article from Find Missing Number - Algorithms and Problem SolvingAlgorithms and Problem Solving

No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (985) Algorithm (795) Review (759) to-do (631) LeetCode - Review (506) Classic Algorithm (324) Dynamic Programming (292) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Search (81) Binary Tree (80) Graph Algorithm (74) Greedy Algorithm (72) DFS (66) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) Codility (54) BFS (53) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Recursive Algorithm (39) LeetCode Hard (38) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Hash (22) Post-Order Traverse (22) Binary Indexed Trees (21) Bisection Method (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) Follow Up (19) O(N) (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Find Rule (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Tree Without Tree Predefined (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts